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Abstract

We propose an algorithm to remove a parabolic wavefront from a convergent or divergent beam in the Wigner
function. Using this approach we numerically collimate the beam. This avoids a dense sampling in phase space to
describe a convergent wavefront. Thereby we reduce the required computer memory, but maintain computational
accuracy and physical effects. Furthermore, we compare two algorithms, shearing and Radon transform, to
propagate the Wigner function in free space. We use the fast Fourier transform to accurately perform shearing.
However, zero-padding is necessary to circumvent aliasing. We prove that the Radon transform is a more efficient
approach for a long propagated distance.
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Background
The Wigner function is a helpful tool to analyze optical
signals in phase space [1, 2]. It includes information about
ray optics and wave optics [3]. In particular for partially
coherent light, the Wigner function visualizes the coher-
ence effects in a straightforward manner [4]. However, the
computation of the Wigner function has certain difficul-
ties. We require a two-dimensional Wigner function to
describe light field with one transverse dimension. For a
field with two transverse dimensions, the Wigner function
spans four dimensions. Consequently, the question of how
to efficiently implement the Wigner function becomes an
important issue in practice. The main goal of this work is
to propagate light by using Wigner functions, while saving
computer memory and keeping computational accuracy.
In optical systems, we often encounter strongly conver-

gent or divergent beams. To represent such a beam in
phase space requires a dense sampling grid. At first we
introduce a method based on numerical collimation, to rep-
resent a convergent or divergent beam in phase space with
as few sampling points as possible. This preserves all the
diffraction effects. The corresponding details are introduced
in Removing a parabolic wavefront in phase space.
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The Wigner function can be propagated by using the
ABCD matrix formalism. The propagation in free space
corresponds to a shearing of signals in phase space. How-
ever a straightforward implementation of this can severely
burden the computer memory. In Shearing and Radon
transform we describe another algorithm based on the
Radon transform with a better computational efficiency.
In this paper we assume that all the light is within a

small numerical aperture (NA). The propagation opera-
tors are paraxial. The incident light fields are partially
coherent in space with one transverse dimension in this
paper. All the algorithms can be extended to fields with
two transverse dimensions.

Method 1: Removing a parabolic wavefront in
phase space
The phase space of a monochromatic partially-coherent
beam is given by the Wigner function,

W x;uð Þ ¼
Z

Γ xþ Δx
2
; x−

Δx
2

� �
exp −i

2π
λ
uΔx

� �
dΔx

ð1Þ
where x and u denote the spatial and angular variables
in phase space, Γ(x1, x2) representing the correlation
function between every two arbitrary transverse
positions given by x1 and x2, x = (x1 + x2)/2, Δx = x1-
x2. As the angle u and the spatial distance Δx are
Fourier conjugated by their definition in Eq. 1, the
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samplings on the spatial and angular axes follow the
following relation,

umax ¼ 1
d Δxð Þ ⋅

λ

2
¼ 1

2d xð Þ ⋅
λ

2
¼ Nx−2ð Þ

2⋅2xmax
⋅
λ

2
ð2Þ

where umax denotes the maximum value on the angu-
lar axis and λ is the wavelength of the light field, the
symbols d(Δx) and d(x) defining the spatial distance
between two adjacent sampling points on the Δx and
x axes respectively, Nx representing the total sampling
points on the x axis. Here we use the term (Nx-2) be-
cause we define one less sampling point on the non-
negative x values than on the negative x values. Based
on Eq. 2, the sampling on the angular axis u is auto-
matically defined once the sampling on the spatial
axis x is chosen.
If a beam is strongly convergent or divergent, a

large angular range on the angular axis is required
to fully describe the beam of a large angle cone.
Thus, according to Eq. 2, we are forced to have a
dense sampling on the spatial axis x in order to ful-
fill the range requirement on the angular axis. Even-
tually this leads to aliasing (Fig. 1a). However, if the
optical component does not need so many sampling
points to describe its spatial structure, a dense sam-
pling on the spatial axis x is a waste of computer
memory. Therefore we convert the convergent or di-
vergent beam into a quasi-collimated beam by remov-
ing a parabolic wavefront. For a quasi-collimated
beam, the angular axis does not need a big range any
more. Then the sampling density on the spatial axis x
can be reduced.
According to Siegman [5], a beam with a convergent

wavefront with a radius of curvature R propagating for a
Fig. 1 Removing a parabolic wavefront from a convergent beam to overco
problem in phase space, b Collimating a convergent beam produced by a
distance of L generates the same diffraction effects as
this beam without the convergent wavefront propagating
for a transformed distance. The equation for the trans-
formed distance is written as follows.

Ltrans ¼ RL= Rþ Lð Þ ð3Þ

After the propagation we need to scale the collimated
beam width by a factor of R/(R + L), so that it is compar-
able to the original beam width.
Figure 1b depicts a simple system as an example. In the

original system, the kinoform lens with a focal length of
16 mm (i.e., R = −16 mm) focuses a quasi-collimated input
beam into a convergent beam. The kinoform lens has a
diameter of 2 mm and a uniform groove height Δz = 3.5λ,
where λ denotes the wavelength. We define the refractive
index of the lens as n = 2.0 with λ = 0.6328 μm. The phase
difference generated by the groove height is 2π(n-1)Δz/λ =
7π, leading to destructive interference. Thus the outgoing
convergent beam carries additional diffraction effects. The
beam propagates in free space with a distance L = 10 mm
after leaving the kinoform lens. In the transformed system,
we place a paraxial negative lens right behind the kino-
form lens to collimate the convergent beam. According to
Eq. 3, the collimated beam propagates in free space with a
transformed distance Ltrans = 26.7 mm. After this propaga-
tion we desire the same diffraction effects as in the ori-
ginal system.
To apply this transformation in the Wigner function,

we insert a paraxial negative lens directly into Eq. 1.
This lens only removes a convergent curvature from
the wavefront, without changing any other phase effects
from the kinoform lens. It is expressed in an equation
as follows.
me the under-sampling problem in phase space. a Under-sampling
kinoform lens
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tj ¼ exp −
i2π
λ

n−1ð ÞΔzj
� �

where j ¼ kino; par ð5Þ

where W denotes the Wigner function of light leaving
the paraxial negative lens, Γ source being the correlation
function of the incident light onto the kinoform lens, tj
representing the phase modulation function of a surface
(i.e., either the kinoform lens or the paraxial negative
lens), Δzj referring to the height of the corresponding
surface. For the paraxial negative lens we define Δzpar =
exp[−iπx2/(λfpar)], where fpar is its focal length. The pro-
file of the kinoform lens is shown in Fig. 2a.

Results and Discussion of Method 1
Figure 2 compares the phase space of the original and
the transformed systems given by Fig. 1b. In the original
system, the focusing effect produced by the kinoform
lens is expressed by a general tilt of all the signals in
Fig. 2c. The additional diffraction effects are indicated
by the oscillatory ripples in Fig. 2c. In the transformed
system the paraxial negative lens introduces an extra
defocusing effect to the convergent beam. It brings the
signals back to the horizontal orientation in Fig. 2e.
Fig. 2 Phase space and propagated beam paths in the original and transfo
groove heights due to finite samplings. a Profile of the kinoform lens, b Ph
leaving the kinoform lens, d Intensity of the propagated beam path in the
paraxial negative lens, f Intensity of the propagated beam path in the trans
Thus the convergent beam is collimated. We propa-
gate this collimated beam with the distance Ltrans =
26.7 mm and scale the transverse beam width after the
propagation. Figure 2g shows the nearly identical
transverse intensities, with a Pearson correlation coef-
ficient [6] of 0.9996, between the original and the
transformed systems. It indicates that the diffraction
effects caused by the kinoform lens are preserved in
the transformed system.
In addition, the angular axis in Fig. 2e has half the range

of the angular axis in Fig. 2c. An angular range of −0.04 ≤
u ≤ 0.04 (radian) is sufficient for the collimated beam,
whereas a range of −0.08 ≤ u ≤ 0.08 (radian) is required for
the convergent beam. Thus the grid in the Wigner function
is decreased from 1024 × 1024 pixels to 512 × 512 pixels by
using the transformed system. This method saves a factor
of 4 of the computer memory.
Figure 3 depicts more intermediate results to explain

the phase effects introduced by the paraxial negative
lens. Based on Eq. 4 and 5, the product between tkino
and tpar includes a sum of the surface heights given
by the kinoform lens and the paraxial negative lens,
seen in Eq. 5.

tkino xð Þtpar xð Þ ¼ exp −i
2π
λ

n−1ð ÞΔzkino xð Þ
� �

exp −i
2π
λ

n−1ð ÞΔzpar xð Þ
� �

¼ exp −i
2π
λ

n−1ð Þ Δzkino xð Þ þ Δzpar xð Þ� �� 	

ð6Þ

The remaining height in Eq. 6 (red curve in Fig. 3a) is
step jumps with a uniform height given by the kinoform
rmed systems. The lens profile in a does not have perfectly uniform
ase space of the incident light, c Phase space of the convergent beam
original system, e Phase space of the collimated beam leaving the
formed system, g transverse intensity after propagation



Fig. 3 Correlation functions of light inside the transformed system. The incident light is a Gaussian Schell-model beam [12] with a beam width of
400 μm and a coherence length of 100 μm at the wavelength of 0.6328 μm. a Surface height, b Real values of the correlation function of the incident
light, imaginary parts being zero, c Phase of the correlation function of light leaving the Kinoform lens, d Phase of the correlation function of light
leaving the paraxial negative lens

Zhong and Gross Journal of the European Optical Society-Rapid Publications  (2016) 12:7 Page 4 of 8
lens. The paraxial negative lens eliminates the fast-
oscillatory phase (Fig. 3c) generated by the focusing
effect of the kinoform lens. In the end only the phase
jumps produced by individual groove height of the kino-
form lens are preserved in the correlation function,
shown as quadrilaterals of constant phase in Fig. 3d. The
edge of each quadrilateral indicates the groove position
in the kinoform lens at corresponding location given by
the x and Δx axes. If the step height equals to a multiple
of the wavelength, the quadrilaterals will vanish. The ab-
solute values of the correlation function do not change
between the surfaces, because the surfaces only modify
the phase of the incident beam.
Furthermore, our method offers an alternative to mag-

nify the convergent beam near the focus region. As the
collimated beam in the transformed system has a larger
transverse width, we obtain a beam profile of more pixels
filled with non-zero values. When we are interested in the
exact focus of the convergent beam, we need to propagate
the collimated beam to infinity (i.e., far field). A far-field
propagation in phase space is performed by a 90° rotation,
i.e., a Fourier transform.
It is worth noting that the Wigner function can de-

scribe non-paraxial light [7]. However, the numerical
collimation method presented in this section has a
limitation. Since we use the thin element approximation
to process surfaces and apply ABCD matrices to propa-
gate light in free space, our propagation operators are
paraxial. Therefore, the algorithms are only valid for sys-
tems within a small NA. If the condition of a small NA
is fulfilled, the convergent beam is allowed to contain a
wavefront deviating from a parabola, e.g., a non-perfect
focusing beam.

Method 2: Shearing and Radon transform
The paraxial propagation of the Wigner function is associ-

ated with an ABCD matrix
1 z
0 1

� �
, where z defines the

propagated distance [8]. The signals in phase space before
and after the propagation share a shearing relation, i.e.,

W
0
x
0
;u

0

 �

¼ W xþ uz;uð Þ→ x
0 ¼ xþ uz

u
0 ¼ u

�
ð7Þ

where W and W’ denote the Wigner functions before and
after the propagation. To perform shearing numerically,
each row in W(x, u) is shifted horizontally in phase space
by a distance of xo = uoz, where xo marks the shifted dis-
tance and uo is the angular coordinate of a horizontal row.
A shift in space corresponds to multiplying a phase factor
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in the Fourier domain. Thus the spatial shift of each row
can be represented by two Fourier transforms,

W xþ xo;uoð Þ ¼ FT−1 exp −i2πxoυ½ �⋅FT W x; uoð Þf gf g
ð8Þ

where x and ν are Fourier conjugated.
The advantage of employing a Fourier transform in

shearing is that it returns an accurate value at each
shifted pixel. However, shearing with a Fourier transform
also has a disadvantage. A large propagated distance z in
free space leads to a large shifted distance of xo in phase
space. Some signals in phase space are sheared outside
the original region. The discrete Fourier transform mir-
rors these signals back into the original region and
causes aliasing. To avoid this error, one must make sure
that the computational region in phase space is wide
enough to support shearing. Otherwise zero-padding
should be used to increase the computational region.
As we are interested in light intensity along propagation,

another method called Radon transform [1] reaches the
same goal as shearing. A Radon transform projects an
image along a radial line oriented at a specific angle to de-
rive the intensity distribution. Figure 4a-c give a qualitative
illustration. Figure 4a is the phase space at the propagated
distance z generated by shearing the phase space at the
propagated distance 0. The vertical lines in Fig. 4a indicate
the integration direction of signals for the transverse inten-
sity at the propagated distance z. Figure 4b results from an
Fig. 4 Geometry of shearing and the rotation. a Phase space at the d
0, c Rotation of (b), d Details of the shearing geometry, e Details of
inverse shearing of Fig. 4a in the directions of the red ar-
rows. This corresponds to a back propagation from the dis-
tance z to 0. Thus Fig. 4b returns the phase space at the
propagated distance 0. The integration lines in Fig. 4a are
sheared into a tilted orientation in Fig. 4b. They still imply
the integration direction for the transverse intensity at the
propagated distance z. Alternatively we may perform a rota-
tion of the phase space of Fig. 4b into Fig. 4c, and integrate
the signals along the integration lines vertically in Fig. 4c to
derive the transverse intensity at the propagated distance z.
This is what we call as a Radon transform.
Figure 4d and e depict the schematic diagrams of the

geometries for shearing and for the Radon transform. As-
sume there are two points A = (0, uo) and B = (0, −uo) in
phase space at the propagated distance 0. For the propa-
gated distance z, the shearing angle is defined as θ =
arctan(z). Points A and B in phase space are sheared
to coordinates of (uoz, uo) and (−uoz, −uo) respect-
ively. The distance between these two points in the
transverse intensity at the propagated distance z is de-
noted by ΔxAB = 2uoz. The total width of the trans-
verse intensity is Δxmax = 2xm + umz, where xm and um
define the maximum values on the spatial and angular
axes in phase space at the propagated distance 0.
In the Radon transform (Fig. 4e), at first we divide the

angular axis by a factor of ϒ = um/xm, so that the two
axes in phase space have the same unit and remain uni-
form during rotation. The projected intensity after a ro-
tation of angle α yields a maximum width of Δxmax’ =
istance z, b Reverse shearing of (a), phase space at the distance
the rotation geometry



Fig. 5 Phase space results of a quasi-collimated Schell beam passing an asymmetric lens. a Phase space of incident light, b Profile of the lens, c Phase
space of outgoing lights. (a) and (c) share the same colorbar
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2xmcosα + 2(um/ϒ)sinα. Inside the projected intensity,
the distance between A and B is ΔxAB’ = 2(uo/ϒ)sinα. In
order to implement the Radon transform, we have to
find out the relation between the rotation angle α and
the propagated distance z. This is achieved by keeping
the ratio between Δxmax and ΔxAB, and the ratio be-
tween Δxmax’ and ΔxAB’ equal.

2xm þ 2umz
2uoz

¼ 2xmcosαþ 2 um=γð Þsinα
2 uo=γð Þsinα ð9Þ
Fig. 6 Comparison between shearing and the Radon transform in propagating
Transverse intensity at z= 2 mm, d Shearing θ= 82.87o for z= 8 mm, e Rotation
(e) have the same colorbar given by Fig. 5a
From Eq. 9 we derive the rotation angle α = arctan(ϒz).
The ratio factor for the transverse intensity width between
shearing and the Radon transform is ϒz/sinα.
Results and Discussion of Method 2
Figures 5 and 6 show an example of using the two algo-
rithms to propagate the Wigner function. We use a quasi-
collimated Schell beam [9] with a nearly flat-top trans-
verse intensity profile as the incident light source. The
beam is propagated through an asymmetric lens with half
. a Shearing θ= 63.43o for z= 2 mm, b Rotation α= 52.24o for z= 2 mm, c
α= 79.03o for z= 8 mm, f Transverse intensity at z= 8 mm. (a), (b), (d) and



Fig. 7 Intensity along the propagated beam obtained by shearing (a) and the Radon transform (b)
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aspheric and half kinoform profiles (Fig. 5b) to generate
an asymmetric phase space (Fig. 5c), so that the phase
space orientation after a rotation is more distinguishable.
Figure 6a-c compare the two algorithms for a short propa-
gated distance (z = 2 mm). In this case both algorithms
produce nearly identical results. However, with a larger
propagated distance (Fig. 6d-f, with z = 8 mm), the shear-
ing stretches the signals in phase space outside and causes
aliasing (highlighted by the black parallelogram in Fig. 6d).
This kind of error can be avoided by using the rotation al-
gorithm. A phase space with a width of 2

ffiffiffiffiffiffiffiffi
2xm

p
is large

enough to support a rotation of any angle. For a propa-
gated distance from zero to infinity, the rotation angle α
corresponds to 0° up to 90°. According to Larkin [10] and
Lohmann [11], an arbitrary rotation matrix can be
expressed as a product of three shearing matrices. When
the fast Fourier transform is used to implement these
shearing operations, this way produces accurate results for
the rotated image.
Figure 7 sketches the intensity along the propagated

beam based on the results in Fig. 6. With the aliasing
error in Fig. 6d, the transverse beam width in Fig. 7a is
Fig. 8 Necessary zero-padding to propagate the phase space given
by Fig. 5c without producing aliasing
always confined to limited extent when z > 6 mm. This
unphysical result is avoiding in Fig. 7b by using the
Radon transform, as predicted by Fig. 6.
Both in shearing and the Radon transform, there are

regions filled with zeros (shown as white arears in Fig. 4a
and c). These regions do not influence the results of the
calculation but require computer memory. The larger
the zero regions are, the less efficient the calculation
becomes. Figure 8 compares the area of zero regions be-
tween the two algorithms based on the phase space
given by Fig. 5c. For a short propagated distance where
zero-padding is unnecessary for shearing, shearing yields
less zero area than the Radon transform. Thus in our
example in Figs. 5, 6 and 7, for a propagated distance of
z < 3 mm, shearing has advantage of requiring less mem-
ory than the Radon transform. For a larger propagated
distance, the area of zeros in the Radon transform does
not increase after exceeding a rotation angle α of 45°.
However, the area of zeros in shearing grows linearly
with the propagated distance. It thus demands a linear
rise of the computer memory, making this method
impractical.

Conclusions
Our methods contribute to a fast implementation to
paraxially propagate beams in phase space, particularly
for partially coherent light.
We show how to apply a method known for working

with coherent light to problems of partial coherence. A
parabolic wavefront is subtracted from a convergent
beam. The beam is converted into quasi-collimated
form. The required sampling density to represent this
beam in phase space is thus reduced. The diffraction ef-
fects in propagation are preserved after the parabolic
wavefront is removed. Furthermore, this approach offers
an alternative to magnify the convergent beam near the
focus region by observing the collimated beam at the
physically equivalent distance.
Besides, we compare the efficiency of two algorithms,

shearing and Radon transform, for propagating the Wigner
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function in free space. For a large propagated distance, the
shearing method requires zero-padding to avoid aliasing.
Its demand on the computer memory grows linearly with
the propagated distance. In contrast to this, the Radon
transform keeps the computer memory within a finite limit.
The advantages of our proposed methods are even greater

with the operation of a four dimensional phase space, even
though this is not specifically shown in this paper.
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