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Robust and precise algorithm for aspheric
surfaces characterization by the conic
section

Petr Křen
Abstract

Background: A new algorithm for precise characterisation of rotationally symmetric aspheric surfaces by the conic
section and polynomial according to the ISO 10110 standard is described.

Methods: The algorithm uses only the iterative linear least squares. It uses fitting the surface form in a combination
with terms containing its spatial derivatives that represent infinitesimal transformations of form.

Results: The algorithm reaches sub-nanometre residuals even though the aspheric surface is translated and rotated
in the space.

Conclusion: he algorithm is computationally robust and an influence of local surface imperfections can be easily
reduced by use of a criterion for residuals.
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Background
Aspheric surfaces are recently widely used in industry. One
of their applications is aspheric lens that often needs its pre-
cise characterisation of form. The description of the
aspheric surface by the conic section with a polynomial cor-
rection is common in ray tracing software and in producer
specifications of aspheric lens. The conic section surface fit-
ting with a polynomial correction was addressed by several
authors [1–5]. Also alternative descriptions of aspheric sur-
faces were introduced e.g. in [6, 7]. Nevertheless, a simple
and robust algorithm is still needed to evaluate the conic
section from measurement data in the ISO 10110-12 form.
The coordinate system is shown in the Fig. 1.
The design shape of aspheric surfaces is often described

by the z-coordinate as a function of the distance r from
z-axis in the form

z ¼ c R; k; rð Þ þ
Xn
i¼2

A2ir
2i ð1Þ

where function c describes the conic section given by
function
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where R is the radius of curvature at the vertex and k is the
conic constant (k < -1 hyperbolic, k = -1 parabolic, k > -1 el-
liptical, k = 0 spherical surfaces). The correction of surface
is given by the even-power polynomial with coefficients A.

Method
Radius of curvature
The expansion of (2) shows that the radius of curvature
R at the vertex (r is small) can be obtained from linear
least squares (i.e. L2-norm) simply using the first coeffi-
cient of an even-power polynomial

z ¼ c R; k; rð Þ þ
Xn
i¼2

A2ir
2i≈
Xn
i¼1

q2ir
2i: ð3Þ

The higher-order terms of Taylor series at the vertex are
negligible and the even-power polynomial with the 18th power
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Fig. 1 The sketch of coordinate system used in the ISO 10110 standard
and in this paper
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z ¼ ~q2r
2 þ ~q4r

4 þ ~q6r
6 þ ~q8r

8 þ ~q10r
10 þ ~q12r

12

þ~q14r
14 þ ~q16r

16 þ ~q18r
18

ð4Þ

is sufficient for reduction of estimation error for R
from data with a given range of r. However, high
degree of polynomial could introduce numerical
errors. They can be reduced by the following way.
The linearity of problem allows making the second fit
for residuals z ¼ z−~z for initial estimate ~z obtained
from ~q2i as

z ¼ q2r
2 þ q4r

4 þ q6r
6 þ q8r

8 þ q10r
10 þ q12r

12

þq14r
14 þ q16r

16 þ q18r
18:

ð5Þ

The final estimate of coefficients with reduced numerical
error is then

q2i ¼ ~q2i þ q2i ð6Þ

thanks to the linearity (additivity) of the problem. The
higher power terms are negligible for r close to the vertex.
Thus the radius of curvature for rotational paraboloid is
obtained as
R ¼ 1
2q2

ð7Þ

with relatively small error because the first term of
expansion of (2) also does not depend on k. The error is
below 10−6 in relative for examples from [3] and the 18th

power polynomial, except the case 1 with relative error
0.002 for R. Thus it is a robust way to evaluate radius of
curvature at the vertex. The polynomial with coefficients
q2i also describes the aspheric surface very well for medium
precision applications (i.e. 1λ flatness of wavefront). Never-
theless, the conic section describes the aspheric form better
with less number of coefficients. For example, the Taylor
series of (2) for hyperbolic surface with high k converges
slowly and thus the even-power polynomial must have
more terms for the corresponding precision.

Conic constant
The conic constant k will be obtained by the following
way. The initial values are obtained as

R0 ¼ 1
2q2

; k0 ¼ −1: ð8Þ

It corresponds to the parabolic solution from the previ-
ous section. The convergence of iterations is worse close
to k = -1 because there is a small contribution from the
conic section (the terms of expansion for function c). In
the next step of algorithm, user selects between the hyper-
bolic region (k < -1) and the elliptic region (k > -1). If the
algorithm output has large errors the second option could
be selected automatically. The next values are then R1 = R0
and k1 = -201 or k1 = -0.5 respectively (The algorithm also
works for oblate elliptical surfaces if k1 is set as a larger
positive number.). The value of k1 for hyperbolic region
can be selected closer to the value -1 (e.g. -3 because the
most of commercial aspheric lenses have the conic con-
stant above -3). Nevertheless, the value -201 was selected
for demonstration purposes. Note that in some cases (e.g.
the case 3 from [3]) the maximum radial distance of
points rmax from axis z is large and it is not possible to cal-
culate the conic section for selected k1 (e.g. -0.5). In that
case the value k1-1 is divided by 2 until the k1-1 is small
enough to calculate the square root in the conic section
function c as a real number. Now we calculate two values
k2+ and k2− (iteration index i = 2) by halving the interval as

ki� ¼ ki−1 � ki−1−ki−2ð Þ=2: ð9Þ
In the next step, we calculate a pair of differences for

all data points using equation

Δzi� ¼ z−c Ri−1; ki�; rð Þ ð10Þ
and fit them independently by the polynomials p2j±r

2j

using the least squares with selected power larger than r2
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(e.g. up to r12 or corresponding to the aspheric lens speci-
fications). The decision between these two fits is based on
the lower residual sum of squares. Then the next k and R
values are

ki ¼ kiþ; R−1
i ¼ R−1

i−1 þ 2p2þ ð11Þ

or

ki ¼ ki−; R−1
i ¼ R−1

i−1 þ 2p2− ð12Þ

and the iterations are repeated until the residuals are
small enough. Then the output coefficients Ai are equal
to the coefficients pi and the final conic section parameters
are ki and Ri (Note that the described algorithm also works
with negative values of R). The results for five cases from
[3] (see also Table 1) are shown in Fig. 2. The convergence
is good for all cases and thus the robustness of such algo-
rithm is shown. Nevertheless, the final k values can differ
by a few percent from the designed values.
The decision between ki+ and ki- values in the algorithm

must be 100% correct. However, an error can occur in
some cases. This problem comes from the fact that the
combination of conic section with even-power polynomial
is underdetermined in parameters within the expected
form error. I.e. even thought the relative error of k seems
to be large, it cannot be evaluated more precisely from
experimental form errors. Nevertheless, the final residuals
are in sub-nanometre range even if the initial value k is
changed (see Fig. 3). I.e. repeating the procedure with
different initial k (in range within the multiple of 2) can
improve the results. Also additional conic constants such
as e.g.

~k i� ¼ ki−1 � ki−1−ki−2ð Þ=2⋅1:2 ð13Þ

can be used in each iteration step for the decision of
minimal residuals to improve the result (Figs. 2 and 3
show this option). However, it is not necessary because
the corresponding residuals are below the uncertainty of
measurement that can be carried out. In the case of
aspheric lens testing, the known designed value ktbt (that
should be calibrated) can be used. Then the initial values
can be set e.g. (k0 + 1) = 0.99(ktbt + 1) and k1 = ktbt for 1%
initial range and the obtained k is then much closer to
the lens design value (see Figs. 2 and 3 for case 2). I.e. if
Table 1 Parameters of aspherical surfaces from [3]

Case R k A4 A6

1 44.577884 −171.0312 2.316294E-4 3.4958

2 4.25 −0.863601 1.77613E-4 −1.553

3 2.708638 −0.8968698 2.788402E-3 1.5533

4 56.031 −3 −4.33E-6 −9.76E

5 1.898836 −0.5603343 −6.8505495E-4 −4.150
the initial parameters are closer to their final values then
a less number of iteration steps is needed.

Rotations and translations
The algorithm from previous section and also from
e.g. [3] solves the problem where the vertex of
aspheric surface is in the origin of coordinates and
the surface is not rotated. However, it is not the
case for measurement results (3D data of [x, y, z] co-
ordinates) that are generally in an arbitrary coordinate
system. This problem can be solved by the following
way for relatively small rotations (up to few tens of de-
grees) and translations (up to few tenths of optical
element size).
Infinitesimal transformations could be used together

(cos α ≈ 1) and thus we can apply linearized substitutions

x→xþ tx−z sinαx≅xþ tx−zαx ð14Þ
y→yþ ty−z sinαy≅yþ ty−zαy ð15Þ
z→z þ tz þ z sinαx þ z sinαy≅z þ tz þ zαx þ zαy ð16Þ

and equation r2 = x2 + y2 into the even-power polynomial
equation of r for z. This transformation introduces odd
powers of x and y to this polynomial. The initial values
of even-power polynomial q2i are obtained by the linear
least squares using equation

z ¼
X9
i¼1

q2ir
2i þ g0 þ g1xþ g2yþ g3x

3 þ g4y
3 ð17Þ

The additional terms with coefficients gj are used to
partially compensate unknown arbitrary transformation
in the initial stage. Nevertheless, these coefficients are
not used in further calculations. Then the each iteration
step consists of the least squares fitting for the following
equation

z ¼
X9
i¼1

q2ir
2i−tz þ txxs1 þ tyys1−αxx 1þ s1s2ð Þ−αyy 1þ s1s2ð Þ

ð18Þ
where

s1 ¼
X9
i

2iq̂2ir
2i−2 and s2 ¼

X9
i

q̂2ir
2i ð19Þ
A8 A10 A12

52E-8

95E-5

77E-4 −7.281244E-6

-9 −1.09E-12 −1.23E-14

1354E-4 −4.4705513E-5 −1.8065968E-5 −2.1569936E-7



Fig. 2 The convergence of relative error of R and k for 5 cases from [3] as a function of the number of iteration index (the polynomial degree
was selected the same as the degree of designed A2i in each individual case). An example for case 2 with the initial value of k within 1%
(hollow triangles)
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are terms used to represent infinitesimal (derivative) linear
and angular transformation contributions to the form
derived from significant terms solving polynomial expres-
sion with substitutions (14)-(16). The even-power polyno-
mial coefficients q̂2i are taken from the previous iteration
step (or they are equal to the initial coefficients q2i in the
beginning). The obtained translation coefficient tz is cor-
rected as tz−αxtx−αyty (for better convergence of tz),
where coefficients α are total rotation angles from all pre-
vious iterations (and are equal to zero at the beginning of
algorithm). The resulting translation coefficients tx, ty, tz
and rotation angles αx, αy are summed with corresponding
translation coefficients t and angles α from the previous
iteration. Then the total translation and rotation parame-
ters (i.e. with overline) are used to translate and then to
rotate all [x,y,z] values from their original position (to
avoid cumulation of numerical errors) and these trans-
formed data points are used in the next iteration step.
These iterations are repeated until all transformations do
not change with a sufficient precision. Thereafter, the
algorithm from previous section is used to calculate
aspheric surface parameters such as R and k in correct
coordinate system.
The rate of convergence of these iterations is super-

linear (better for smaller transformations) and faster for
Fig. 3 The standard deviation of residuals for 5 cases from [3] and the effe
standard initial value for prolate elliptical surfaces)
higher degree of even-power polynomial. The conver-
gence is slower for larger data sets. Nevertheless, the
polynomial degree of 18 (i = 9) is sufficient for iteration
convergence of all cases that have been tested (It also
includes parameters of various real aspheric lens from
different producers.). In the case 1, which is an extreme
hyperbolic case with k equal about -171 (not a real lens
case), the position error is larger. However, it can be
reduced by reduction of the radial range of data or by
increasing of polynomial degree.
The good convergence that algorithm reached is

shown in Fig. 4. The calculation of position and angles
of rotations takes less than one tenth of second on
standard computer for data set with a few thousands of
points. Thus this algorithm can be used for a real time
tracking and displaying of aspheric surface in desired co-
ordinate system.
It should be also noted that in case of large dataset

(millions of coordinates), the iterative process could be
carried out with some randomly selected part of data
(e.g. every thousandth) due to the low roughness of op-
tical surfaces. It speeds up the calculations because the
algorithm complexity is given by the linear least squares
and thus its calculation time is linearly proportional to
the number of data points. The results of such pre-
ct of different initial k on convergence in the case 2 (k = -0.5 is the



Fig. 4 Errors of the radial distances of vertex and the total angles of rotation as a function of iteration number for 5 cases of surfaces from [3]
with initial translations 0.1 mm in all directions X, Y and Z and rotations 0.1 rad and 0.2 rad for axes X and Y respectively
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calculation of transformation and form parameters are
used for modification of the initial state of algorithm for
subsequent calculation with the full dataset that will de-
scribe the form more precisely.
Surface imperfections
The local imperfections in data arise from measurement
outliers or effect of dust, marks and/or scratches. These
imperfections influence the fitting algorithm results
although the area of such imperfection is often relatively
small. The lens parameters should be evaluated more
precisely without an influence of these data (e.g. the
focal point of lens). The optical aperture is not so affected
if such data from optically not usable areas are removed.
The following algorithm with the residual criterion can be
used to solve this problem effectively and to keep the
robustness of the presented algorithm.
All iteration steps for evaluation of transformation

parameters that was described in the previous section
will contain the criterion for the correct data. If the resid-
uals of given points will be greater than e.g. 10σ (where σ
is the standard deviation in z-direction for each iteration
Fig. 5 Excluded fraction of points and relative error of estimated radius R a
(Other parameters such as estimated angle of rotation are not shown beca
for the radius R.)
step) of least squares residuals then these points will be
removed from the data set.
The following example is applied on the case 2 from

[3] that is aligned (transformed by the same translations
and rotations) as in the previous section. The artificial
imperfection is applied to the aspheric form as a differ-
ence with the Gaussian form

δz ¼ h exp − x−x0ð Þ2 þ y−y0ð Þ2� �
=s2

� � ð20Þ

where h is the height of imperfection, s is its width and
[x0,y0] are its coordinates. The results for different
heights and for s = 0.1 mm, x0 = 0.5 mm and y0 = 0.3 mm
are shown in Fig. 5.
We can clearly see that the error of estimated radius is

proportional to the height of such imperfection if it is
not filtered out (the filter factor is too large). However,
the form is fitted correctly for lower filter factors (such
as 10σ in this case). Nevertheless, the filter factor cannot
be too small because too many points will be excluded
from calculations. Thus some compromise must be
made and the corresponding filter factor value is differ-
ent for different aspheric surfaces and for different
s functions of filter factor (sigma multiples) for the case 2 from [3].
use the transition between the correct and incorrect value is similar as
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imperfections. In the case of min-max algorithm (e.g. in
[8]) the form error is large if 0% of points is excluded.
However, it can be significantly smaller if some points
are excluded (e.g. about 5%). The parameters obtained
from such fitting with a reasonable filter factor can be
used to display surface deviations for all points and the
standardized form error can be evaluated from these
residuals.
Another example of imperfection is measurement

noise or roughness of surface. The noise in [x,y,z] data
coordinates stops the algorithm convergence. Neverthe-
less, the resulting error of parameters corresponds to the
uncertainty arising from this noise and the algorithm
robustness is not affected.
The weighted least squares can be introduced for the

conic constant iterative search to deal with the heterosce-
dasticity of residuals. We can use e.g. weights w corre-
sponding to the projection of orthogonal least squares to
the z-direction

w ¼ 1þ ∂z
∂r

� �2
 !−1=2

ð21Þ

or to the local curvature of form (i.e. inversely propor-
tional to local radius of curvature)

w ¼ ∂2z
∂r2

1þ ∂z
∂r

� �2
 !−3=2

ð22Þ

containing the first and the second derivatives of surface
analytically calculated from parameters in the previous
iteration step. However, the change of weight from w = 1
has a negligible impact on the results.
Fig. 6 The fitting errors of algorithm for the case 2 from [3] indicated as co
0.1 mm in all directions X, Y and Z and rotated by 0.1 rad and 0.2 rad for a
were artificially added (with h = 0.05 mm or h = -0.05 mm and with s = 0.05
in the surface)
Results and discussion
The comprehensive test of described algorithm is shown
in Fig. 6. An aspheric surface was transformed to a coordin-
ate system unknown for the computer program. Ten artifi-
cial imperfections (positive and negative in z-direction)
were used and than automatically filtered-out by the fitting
algorithm (8.5% of data were removed). The obtained resid-
uals have standard deviation 3.3 pm and maximal error is
11 pm in z-direction (indicated as red colour on the edge of
aspheric surface).
The results clearly showed that algorithm allows find-

ing positions of aspheric lenses of unknown form with
sub-nanometre accuracy and it was achieved only by
least squares fitting. The fitted form for various aspheric
surfaces reached residuals also at sub-nanometre level.
The non-linear least squares methods (such as in [3])
allows less number of iterations. Nevertheless, linear
least squares method, presented here, calculates each
step faster and its convergence is robust as it was shown
on various examples. All imperfections can be effectively
filtered out and precise parameters of lens could be easily
obtained. The wide range of algorithm properties such as
speed, robustness and effective filtering enables its use in
automatic processes.

Conclusions
The algorithm for the evaluation of parameters of rotation-
ally symmetric aspheric surfaces was described and tested.
The sub-nanometre precision of fitting was reached with
this new robust and fast algorithm. The algorithm also does
not need precise estimation of parameters for the initial
iteration. It allows ISO 10110 characterization with the
conic section parameters of surfaces that are rotated and
translated as it is common in the data output from meas-
urement devices and alignment markers on lens are not
needed. The additional criterion for residuals can effectively
lours of points (two views in [mm]). The asphere is translated by
xes X and Y respectively. Ten randomly placed Gaussian imperfections
mm). The filter with factor 10σ filtered out these imperfections (holes
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remove unuseful data to keep results for the main part of
aperture unaffected by local imperfections. Moreover, the
part of algorithm that finds the correct coordinate system
and removes outliers can be used independently on the
conic section fitting part. Thus the algorithm will be useful
for the optical community for precise characterisation and
testing of aspheric lens.
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