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Abstract

Background: Multispectral imaging permits to capture more spectral information on object surface properties than
color imaging. This is useful for machine vision applications. Transmittance spectral filter arrays combined with a solid
state sensor form an emerging technology used for snapshot acquisition. In spectral filter arrays technology, the
sensitivities of the camera have critical consequences, not only on applications, but also in the viability of the system.
We discuss how to balance the energy of each channel in single exposure multispectral imaging.

Methods: We propose a methodology to design filters that permits to reach an optimal balance of energy. We apply
this method on practical illuminations combined with a Gaussian model of transmittance filters.

Results and discussion: Our results demonstrate that we can optimize energetically the global camera response
with few efforts for several cases of illumination environments, for a given sensor and a number of spectral channels.
This methodology can be embedded in an application-oriented optimization framework.

Conclusions: This methodology enables achieving a great range of optical design, and it can be embedded in an
application-oriented optimization framework.

Keywords: Spectral filter arrays, Multispectral imaging, Optical design

Background
Multispectral imaging (MSI) is a sensing technique that
is employed in different spectrum of wavelengths. When
used in the context of typical silicon sensors, it may span
the electromagnetic spectrum from ultra-violet to near-
infrared (NIR) range, approx. [320-1100] nm. Up to now,
multiple sensors or exposures were necessary to record
such images [1–3]. The generalization of color filter arrays
(CFA) into spectral filter arrays (SFA) [3] permits the use
of a single sensor and a single exposure to record a mul-
tispectral image. This solution can be encapsulated into
a compact and affordable MSI solution, easy to handle,
which complies with a typical camera pipeline. The prin-
ciple of SFA imaging is to combine a single sensor with
a filter set. Each spatial position of the array captures
only one spectral channel similarly to the Bayer filters
[4], and the filter transmission characteristics determine
the sensor spectral properties. Several realizations of such
setup have been shown recently in the literature [5–7]. An
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example is provided in Fig. 1. Various research directions
have been explored: filter characteristics [8–11], ade-
quate full resolution image processing, e.g. demosaicing
[12–17], and other aspects [18, 19].
In silicon based solid-state sensor image acquisition,

when a photo-diode receives too much radiant energy, the
maximum number of electrons per pixel is reached [20].
This refers to saturation, and extra information is lost.
In addition, the overloaded photo-site distributes charges
into adjacent pixels, generating blooming (especially for
CCD technology) [21, 22]. On the other hand, if a photo-
diode does not receive sufficient photons, the signal to
noise ratio (SNR) of the electrical signal generated is too
low compared to the global noise level [23]. Thus, when
integration time is fixed, the sensor performance is opti-
mal only within a given range of intensities according to
its sensitivity. In a gray-level intensity sensor, pixels have a
similar sensitivity and it is relatively easy to set an optimal
integration time [24, 25].
However, in the case of a SFA set-up, different sensitivi-

ties are present on the same chip andmay lead to over- and
under-exposed classes of pixels, depending on the scene
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Fig. 1 a Example of a mozaic element in an SFA imaging system composed of 8 channels. b Corresponding relative spectral characteristics of the
camera in the work by Lapray et al. [3, 7] (c). Filters transmittance manufactured by SILIOS Technologies [37]. d Sensor response. e Raw image
sample of the MacBeth color checker from the SFA camera. f Zooming on an achromatic patch of the raw image to observe energy balance
disparity among all channels

and on the illumination. This is illustrated by Thomas
et al. [7], where the sensitivities of the less-sensitive band
and the most-sensitive band (see Fig. 1) show a rela-
tive efficiency ratio in the interval [11%, 99%] for a set
of practical filters, an ideal viewing illuminant and a per-
fect diffuser. In such cases, it is more likely that a single
optimal integration time shall generate either saturated
values or under-exposed pixels, as indicated by results
reported in their article. Figure 1(e) shows a raw image
captured with an SFA camera. On a zoom on Fig. 1(e), we
can observe a severe discrepancy between pixel intensity
values for a uniform patch.
One might consider several solutions to solve this prob-

lem. One solution would be to set an optimal integration
time for each pixel. This would be possible by using a
multiple layer technology, see e.g. [26]. To the best of
our knowledge, this approach is still in development and
remains an expensive solution, which does not yet meet
the requirements of a low price SFA. Another solution
is to use high dynamic range imaging (HDR) based on
multiple exposure, see e.g. [27, 28]. Although the solution
may be embedded in a real-time framework, it precludes
a single-shot SFA capability. Another solution would be
to apply gains to re-balance the under-exposed chan-
nel, but the SNR would still remain at a similar level
despite denoising potential facilities. One might consider
this problem in the sensor design and optimize the cam-
era sensitivities for a particular condition. Such an opti-
mization may be constrained by a specific application
or by manufacturing constraints in filter characteristics.

Energy balance of SFA has been previously considered by
Péguillet et al. [29]. This paper develops such a solution
within a constrained optimization framework.
Optimization of spectral filters have been extensively

studied in the color imaging field for either accurate
color acquisition or reproduction, by e.g. Vhrel [30, 31].
Sharma et al. [32] addressed the problem of obtaining
a good perceived colorimetric information, under sev-
eral viewing illuminants. A set of 3 to 7 filters have been
designed using their optimization framework, and a lin-
ear minimum mean squared error estimator. Simulation
shows that their technique performs better and with an
improved SNR than the solution initiated by Vhrel [31].
They concluded that the use of 4 bands seems to be the
optimal solution to get a good accuracy when recording
color under multi-illuminants. This conclusion is shared
by Sadeghipoor et al. [33] who proposed an algorithm to
optimize the spectral sensitivity function of the camera
by finding the best demosaicing matrix for color acquisi-
tion. The constraint imposed is that the resulting function
contains smooth practical filters, which are assumed to be
physically realizable. Filters have been also optimized by
Monno et al. [34] in the context of SFAs in order to pro-
vide the best demosaicing results. In their study, they used
Gaussian models to approximate sensor sensitivities.
In this work, we propose to base on these previous

works and to develop a methodology that provides the
best filter bank for a single-shot SFA camera, while con-
sidering energy balance. The main contribution is in the
definition of what is energy balance and how this may
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be handled within a more comprehensive optimization
process that includes higher level information processing
(such as demosaicing, spectral signature indicators or
spectral reconstruction).
We use a Gaussian model to approximate transmittance

filters and to provide simulated examples. The method-
ology can be extended to any optical model that can
describe the transmittance of filters in a few meaningful
parameters, e.g. hyper-Gaussians or multi-lobe single cav-
ity Fabry-Pérot, as suggested by one of the anonymous
reviewer. The proposedmethodology is based on an imag-
ing model and on an empirical set of constraints such
as:

1. We must avoid over-exposed and under-exposed
areas when shooting a scene with the multispectral
camera.

2. We must guarantee the best post-processing
efficiency (e.g demosaicing or spectral
reconstruction) by homogenizing independent
channel noise and preserving the design of the filter
according to the application.

3. We want to guarantee system versatility over a set of
viewing illuminants.

Methods
Acquisition model and balanced sensor
We consider a SFA camera that consists of N spectral
channels characterized by F, a set of spectral transmit-
tance filters, such as F = {f1, . . . , fN }. The spectral sensi-
tivity of the sensor without a SFA is represented by S(λ).
For a given illuminant l(λ), and an object of reflectance
O(λ), we obtain a set of values � = {ρ1, . . . , ρN }. Every
value ρi is given by filter fi, i ∈ �1,N� such as in Eq. 1.

ρi =
∫

�

O(λ)l(λ)S(λ)fi(λ)dλ (1)

This equation could also include the transmission of
the medium in which the system is used, e.g. underwater
imaging.
We define energy balance of a sensor for one illumi-

nant when, for a perfect diffuser, the variance of � is
equal to 0, in other words, when ρ1 = ρ2 = . . . = ρN .
The flat reflectance object may be replaced by a specific
reflectance property characterizing the application. For
compactness, we denote � = X(F), a function where X
define a vector � from a set of filters F, according to the
imaging model of Eq. 1.

Definition 1 In order to guarantee energy balance, we
want to find F among the general set of possible transmit-
tance curves T, such as it minimizes V (�), the variation
among components of �. If we note Y (F) = V (X(F)), this
can be summed up as finding F such asmin∀F∈T Y (F).

To generalize this definition to represent practical illumi-
nant conditions for a range of applications, we introduce a
set of illuminants L =[ l1, . . . , lM] assumed to be represen-
tative of lightning conditions. This set may be dependent
on the application. Then we rewrite Eq. 1 as Eq. 2, with
j ∈ �1,M�.

ρi,j =
∫

�

O(λ)lj(λ)S(λ)fi(λ)dλ (2)

Definition 2 Again, for a perfect diffuser, we want to
find an optimal set F, which minimize the variation among
components of �′. �′ is a set of �j, such as �′ =
{�1, . . . ,�M}. Similarly, we note Y ′(F) = V (X′(F)), where
X′ is a set of functions according to Eq. 2 and we can write
the problem as finding F such asmin∀F∈T Y ′(F).

The solution where this converges might not be suitable
for multispectral acquisition. Indeed, an obvious solution
to this problem is when F is composed of the same fil-
ters (i.e. f1 = f2 = . . . fN ). To ensure the practicality of
the filter set, we constrain the set F to a reduced subset
of T. The reduced set is comprised of Gaussian filters dis-
tributed over the considered part of the spectrum. Then, F
is characterized by its set of peak sensitivity locations� =
μ1, . . . ,μN , which is fixed by the application. We propose
to give a freedom to two parameters in order to find an
optimal F using the standard deviation of each Gaussian
σ1, . . . , σN and the maximum transmittance B1, . . . ,BN .
This model could be adapted to several models of trans-
mittance, but for clarity of communication, it is easier to
work with Gaussian filters.
According to Definition 1, one may still find a minimum

convergent solution. However, the set might not be viable
in practice, due to limited efficiency or unpractical width.
According toDefinition 2, we can not converge to zero due
to the variability in illuminations. But we can give a degree
of freedom, ε, such as Y ′(F) + ε = 0.
In this context, we must put constraints on the model,

in order to ensure the practicability of the filters set
(and its realization), a reasonable variation among the set
and relatively good maximum transmittance. These set of
constraints are to be defined in next Sections.

Sensor considerations
A major element in this system is the shape of the sen-
sor spectral response S(λ). The silicon response is a fixed
parameter in our methodology because we assume the
choice of sensor to be made a priori, based on the appli-
cation. An example of such a characteristic is presented in
Fig. 2.
A photon is characterized by a wavelength λ which

is equivalent to an energy E. The inverse relationship
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Fig. 2 The spectral response S(λ) (380 to 1100 nm) of the SONY
IMX174 sensor, as measured in the work from Point Grey™ [47]

between the energy of a photon and the wavelength is
defined by:

E = hc
λ
, (3)

where c is the speed of the light in vacuum and h the
Planck’s constant.
Photons with an energy bellow 1.1eV will go through

silicon without interaction [35]. This corresponds, accord-
ing to Eq. 3, to a theoretical wavelength larger than
1125 nm. The structure of the sensor will, in fact, reduce
this wavelength prior to reaching the theoretical limit [35].
Our model does not include the optical effects. Indeed,
the layer of silicon can act as a Fabry-Pérot interferometer
[36], which modifies the absorption properties of the sub-
strate. Without the optical effects, we can use directly the
spectral response as defined in Fig. 2.

Filter considerations
The filters considered in SFAs are most often a realiza-
tion of a Fabry-Pérot interferometers today [5, 7, 37].
Future technical development may give rise to nano-tube
or nano-hole SFA realizations [10]. Filters can be metal-
lic filters [38, 39] or nano structure filters [40], and the
substrate is often silicon or doped silicones, germanium,
AsGa, indium, etc.
We use a simple Gaussian model to approximate Fabry-

Pérot interferometric filters, such as realized by SILIOS
[37] and IMEC [8]. This approximation has been exten-
sively done in the literature, in Fig. 3, we verify the impact
of this approximation in term of energy inaccuracy before
to push further our description. This figure shows the dif-
ference between a Gaussian approximation (G), a model
of Fabry-Pérot (FPM), and measurement of a practical
Fabry-Pérot designed by SILIOS (FPR). If we compute the
differences between these curves as integral of function
difference, we obtain the following numbers: d(FPR,G) =
36.74%, d(FPM, FPR) = 9.96% et d(FPM,G) = 46.70%.
Although the difference between G and the Fabry-Pérot
instances seems to indicate that the approximation may
not be adequate, the difference between the FPM and

Fig. 3 Comparison between Fabry-Pérot filter model (FPM), gaussian
model (G) and practical realization of a filter (P4) from [7] (FPG). The
differences between these curves as integral of function difference are
d(FPR,G) = 36.74%, d(FPM, FPR) = 9.96% and d(FPM,G) = 46.70%.
The difference at FWHM, then dσ (FPR,G) = −1.05%, dσ (FPM, FPR) =
−1.99% and dσ (FPM,G) = −3.04%

the FPR indicates that depending on the technology, gen-
eral models would not be adequate either due to noise
and specific -secret- tuning of the manufacturer. We then
make the statement that for illustration purpose it is more
interesting to develop a methodology with Gaussian and
to let the user of this methodology to tune it toward
his own model of filters. In addition, if we only com-
pute the difference in peak values, the Gaussian model is
closer to the Fabry-Pérot model than the measurement,
due to the realization process. If we consider the differ-
ences between these curves within the standard deviation
of the Gaussian, i.e. full width at half maximum (FWHM),
the difference between FPM and FPG is greater than the
difference with G and validate the use of the model by the
assumption that the difference comes from the lobes of
the Fabry-Pérot filter, which generate only an offset spec-
trally consistent. This simple computation may also serve
in the analysis of literature results obtained with Gaussian
simulations.
The shape of the filter according to the Gaussian model

depends on three parameters, namely the standard devia-
tion σ , the scaling factor (the peak efficiency) B, and the
average of the distribution (the location of the filter in the
electromagnetic range) μ. Example of filters are given in
Fig. 4 where we show a set of three Gaussian filters uni-
formly distributed. Within this model, we can write fi as
in Eq. 4.

fi(λ) = Bi
1

σi
√
2π e

− 1
2

(
λ−μi

σi

)2
(4)

whereμi are fixed parameters according to the application
and σi and Bi correspond to the given degree of freedom.
The distribution of μ may be given a degree of freedom,
but according to our knowledge, users usually optimize it
for a specific application. Here, we consider thatμ are pro-
vided in a priori design and as example, we consider that
it is an equi-distributed set or a list of selected peaks, such
as shown in the Results section. In some cases, where μ
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Fig. 4 A set of Gaussian filters where N = 3, μi = λmin + 
�(2i−1)
2N ,

σ = 
�
N×4 and Bi = 1. The gaussians are spaced by 4σ and the

intersection between two is at ±2σ

are not provided or in a more global framework, it may be
embedded into the optimization process with little extra
work and restrained so that all channels do not end with
the same transmittance.
As for example purpose, we define an equi-distributed

μ set, within the global applicable range of wavelengths

� = λmax − λmin and the number of channels N, so that
the central positions μi of each Gaussian are fixed before
the optimization process. Consequently, in this case, the
position μi can be defined like in Eq. 5:

μi = λmin + 
�(2i−1)
2N , (5)

In a practical realization of an SFA system, we may
consider two situations, as shown in Figs. 5(a) and (b).
We can consider two sensor configurations. One is very

specific to some applications, such as in medical imaging
[41, 42], where a very narrow spectral band of about 10
nm or ratio computed between specific narrow bands are
required. In this case, Fig. 5(b) is a typical setup, and peaks
cannot be given freedom. Another situation, where very
wide bands are considered, does not to provide an optimal
results either for demosaicing or for spectral reconstruc-
tion. After looking at the results of Sadeghipoor et al. [33]

and Wang et al. [43], it seems that rather a relatively wide
band is adequate for general demosaicing and spectral
reconstruction. Indeed, we want to preserve separability
between wavelengths if possible, e.g. NIR channels must
not be polluted by visible information for computer vision,
while maximizing spectral correlation for demosaicing. In
this last case, we may authorize a little freedom on μ.

Single-parameter optimization
In this section, we derive the optimization process in the
last section for a single-parameter optimization. We opti-
mize the filters by modifying the parameters Bandσ of the
Gaussian for each channel i, following Eq. 4. The aim of
the single parameter optimization is to obtain the same
camera response (i.e energy balance) for the N filters,
while taking into account the substrate absorption and
the spectral properties of the illumination. So we search
for good settings of Bi or σi in the transmission charac-
teristics of filters. We fix the sigma for all bands in the
amplitude optimization, and we fix the amplitude in the
standard deviation optimization. The response ρi is cal-
culated for a set of filter transmissions, f (B1, . . . ,BN ) and
f (σ1, . . . , σN ), when searching respectively for the ampli-
tudes and sigmas. In these two cases, optimal parameters
are found such as ρ1 = ρ2 = . . . = ρN = C̃, a constant
value.
For the analysis, we will consider the case of a camera

based on N =[ 3, 5, 8, 12] bands. We chose a three-band
sensor to represent the typical color case, five bands are
chosen for multispectral color sensors or colorimeters
[44]. The eight bands are selected for comparison with
an existing filter realization [3, 7]. Twelve bands are cho-
sen, as they are expected to provide the best spectral
reconstruction used in multispectral sensors [43, 45].

Energy balance by changing themagnitude
We change sequentially the magnitude of Bi to obtain
energetically balanced filters, whereas the value of σ is
set as a constant for all bands during the optimization
process.

Fig. 5 a First situation: Large overlapping area between the Gaussian filters (σ = 
�
7 ). b Second situation: Large gap area between the Gaussian

filters (σ = 
�
24 )
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Fig. 6 Optimal filters according to the variation of magnitude for N = 3 (a), 5 (b), 8 (c) and 12 (d). This is the optimization result for an illuminant E
and a lambertian reflector. The silicon efficiency of the IMX174 SONY sensor used is shown in blue in background

We use a rescale algorithm. First, initial values of Bi,0
are set to 1. Equation 1 is applied to calculate initial
response values ρi,0 for which channel responses are not
balanced (uncorrected filters). Then, the optimal ampli-
tude parameters are found by dividing the highest value
among the set by ρi,0. The equation could be written as
this:

Bi = ρmax
ρi,0

, (6)

After normalization between [ 0, 1], we finally find filter
parameters B1, . . . ,BN , for which each camera integrated
responses ρi share the same energy value ρ1 = ρ2 = . . . =
ρN = C̃.
Figures 6(a), (b), (c) and (d) show the results after opti-

mization under the illumination E for a perfect diffuser
(O(λ) = 1). In the range of wavelengths considered, σ

is fixed and is equal to 48.0 for three filters, 28.8 for
five filters, 18.0 for eight filters and 12.0 for twelve fil-
ters. For visualization and interpretation, we also show the
response curve S(λ) of silicon contained in Fig. 2.
We observe that the magnitude of each filter depends

directly on the response of silicon. These results highlight
the fact that the silicon response is not uniform. In addi-
tion, if we consider a linear model of noise, the difference
in amplitude is related to the difference of channel noise.
The difference among filters increases as the bandwidth of
the filters becomes narrow.

Energy balance by changing the standard deviation
This time, B is set as a constant for all bands. As for the
amplitude optimization process, Eq. 1 is applied to calcu-
late ρi,0 initial values for each filters. In order to obtain the

Gaussian values of σi (on a fixed interval) for which the fil-
ters share the same energy, we search for the minimum of
the single-variable function defined as this:

argminσi |C − C̃| such that σmin ≤ σi ≤ σmax,
(7)

where C =
∑

ρi,0
N and C̃ is the integration result of camera

response when changing sigma in Eq. 4.
The obtained energetically balanced filters are pre-

sented in Fig. 7(a), (b), (c) and (d), for a flat reflectance
object and illuminant E. The amplitude Bi is fixed and is
equal to 1.
We observe that the standard deviation of each filter

depends directly on the response of silicon. These results
highlight the fact that the silicon response is not uniform.
In addition, if we consider a linear model of noise, the dif-
ference in standard deviation is related to the difference
of channel noise. The difference among filters increases as
the bandwidth of the filters becomes narrow.

Limitations
When we optimize the magnitude or the standard devi-
ation of the filters, we reach an exact solution in a
few iterations, where standard deviation of the values
{ρ1, ρ2, . . . , ρN } is near or equal to zero. However, we
observe an important reduction of efficiency in most of
the optimal camera responses. Indeed, typically, 70% of
the energy should be filtered out to guarantee the bal-
ance. This result is illustrated in Fig. 6(d). In Figs. 6(c) and
(d), we can see that we severely reduced the transmittance
efficiency of most of the filters. This appears to be an inef-
ficient situation for practical implementation, considering

Fig. 7 Optimal filters according to Eq. 7, with the variation of standard deviations σi for N = 3 (a), 5 (b), 8 (c) and 12 (d) such as 0.1 ≤ σi ≤ 100.
Illuminant E and a lambertian reflector are used. The sensor silicon efficiency is shown in background
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the noise that might appear with low sensitivity filters.
Such optimization is not adequate in practice. Spectral
overlapping and spectral gap problems among bands are
observed when we perform the optimization on σ (see
Figs. 7(c) and (d)). Moreover, when illumination changes,
filters change accordingly to the coupled pair {sensor, illu-
minant}. In a practical case, several illuminations may be
considered, and an exact optimization may not give good
results in several configurations.
These results suggest that a constrained multi-

parameter optimization may be a better fit to realize
practical filter banks, which is the subject of the following
section.

Multi-parameter constrained optimization
In the last section, the optimization of parameters σ and
B were proposed independently, such as presented by
Péguillet et al. [29]. In this section, we present a new
framework for finding optimal spectral filter responses
according to the global energy balance of the camera sys-
tem. To this aim, we define a set of constraints that should
guarantee the following principles:

1. There should be no gap in the spectral domain,
otherwise some spectral information will be lost for
some wavelengths.

2. There should not be too much spectral overlapping
of a filter.

3. The sensor must globally be sensitive. Peak
attenuation should be controlled.

4. Energy balance must be achieved for an illumination
set.

The framework tunes both parameters B and σ , in front
of a set of illuminations given by the application, and
constrained by the above principles. μ is presented as
constant here, but may be embedded easily in the opti-
mization parameters if the application allow freedom on
the peak sensitivities. A block diagram of the method is
presented in Fig. 8.
The silicon response S(λ) is a specific parameter as it

corresponds to the selected imaging device. The illumina-
tion lj(λ) is also given as parameter. The global problem
formula is as in Eq. 8:

argmin
σi,Bi

STD(�′) (8)

given a set of linear inequalities that will be defined in the
following sections. STD stands for the standard deviation
of the set of computed sensor responses.

Constraints on amplitude
The value of the amplitude B must be as high as possible,
otherwise the signal will be too weak compared to noise.
In the same time, Bmax is not necessary 100% transmit-
tance since a limitationmay be imposed by the technology
used to manufacture the filters. So, we take Bmin and Bmax
in Eq. 9 as a minimum and maximum amplitude param-
eters. In any case, the maximum value can not be over
100%, and we notice that it may be beneficial for one band
to be less efficient in order to be balanced with the others.

Bmin ≤ B ≤ Bmax (9)

Constraints on overlapping
On Fig. 5(a) we observed too much overlapping. To avoid
overlapping, according to the Fig. 9(b), we must respect

Fig. 8 Block diagram of the global optimization framework
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Fig. 9 a Values of percentile quantities related to a Gaussian function and sigma [50]. Constraints to avoid overlapping (b) and gaps (c), accordingly
to Eqs. 10 and 12, using P = 1 and Q = 3

the conditions of Eq. 10. We use the Gaussian percentiles
to define this constraint, expressed as an integer weight of
the standard deviation.
Equation 11 puts the Eq. 10 in the format A.x ≤ b in

order to prepare a mathematical model for the optimiza-
tion tool. A is a matrix and b is a vector. The constraint set
of equation can be written as this:

μi−1 − Pσi−1 ≤ μi − Qσi
μi−1 + Pσi−1 ≤ μi − Pσi
μi + Pσi ≤ μi+1 − Pσi+1
μi + Qσi ≤ μi+1 + Pσi+1 ,

(10)

⎛
⎜⎜⎝

−P Q 0
P P 0
0 P P
0 Q −P

⎞
⎟⎟⎠

⎛
⎝ σi−1

σi
σi+1

⎞
⎠ ≤

⎛
⎜⎜⎝

μi − μi−1
μi − μi−1
μi+1 − μi
μi+1 − μi

⎞
⎟⎟⎠ (11)

where the values P and Q are user parameters. These are
defined as 0 < P < Q. The value of P can more likely be 1
and the value of Q, 3, according to the energy distribution
of a Gaussian, presented on Fig. 9(a).

Constraints on gaps
On Fig. 5(b) we observed gaps. In the same manner as
for the overlapping constraints, according to the Fig. 9(c),
avoiding gap is done by respecting the conditions of
Eq. 12. We can then define linear constraints as follow:

μi−1 + Pσi−1 ≥ μi − Qσi
μi−1 + Qσi−1 ≥ μi − Pσi
μi + Qσi ≥ μi+1 − Pσi+1
μi + Pσi ≥ μi+1 − Qσi+1 ,

(12)

⎛
⎜⎜⎝

−P −Q 0
−Q −P 0
0 −Q −P
0 −P −Q

⎞
⎟⎟⎠

⎛
⎝ σi−1

σi
σi+1

⎞
⎠ ≤

⎛
⎜⎜⎝

μi−1 − μi
μi−1 − μi
μi − μi+1
μi − μi+1

⎞
⎟⎟⎠ (13)

where the values P and Q are the same than the values
used with the constraints to avoid the overlapping issue.

Resolution of the inverse problem
The optimization framework was implemented in Mat-
lab using the fmincon routine to solve the function 8. The
algorithm used is the active-set. In order to select the
optimization solving method, we followed the MATLAB
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recommendation of use of fmincon function [46]. Indeed,
the size of the problem is not very large (we can store
all data during optimization, and linear algebra can be
easily computed on them), the problem does not seem
to show local minimum issues, although several approx-
imated solutions may be possible. So this solution would
provide the fastest optimization of parameters. In test,
we noticed that other existing algorithms would reach the
same results.

Results and discussion
General results
The code can be downloaded online along with differ-
ent sensor responses to be tested. The set of constraints
was defined as above. The range of wavelength chosen is
the visible spectrum (380 − 780 nm), but the acquisition
model described in the methods section can be general-
ized to NIR wavelengths, as long as the imaging model
used is valid, i.e. without fluorescent effects and emission
from objects. The set of constraints are linear functions.
In practice, the multispectral device can be subject to a
limitation of illuminant intensity, and to a limited range of
exposure times, which is not addressed here. We also con-
sider the sensor to have a linear response. If it was not the
case, a linearization function may be used to correct the
data. Figure 10 and Table 1 show a list of standard illumi-
nants used. To perform simulations, we consider the case
of a commercial sensor by SONY [47], and use the spectral
sensor response presented in Fig. 2. A similar process can
be used for most of the sensors, for which the absorption
by wavelength is known or measurable.
Table 2 shows several iterations of the optimization pro-

cess, for different illuminants and number of channels. By
analyzing the results, we distinguish 3 specific behaviors:

1. The optimization process converges to a feasible
solution std(�′) � 0 (highlighted in blue in Table 2).
See the model at the beggining of the document.

Fig. 10 Illuminants used in the experiments. Corresponding emission
spectra between 380 and 780 nm

Table 1 List of relative illuminants used in the experiments and
there Correlated Color Temperature (CCT)

Illuminant CCT (K) Environment

E - Theoretical reference

A 2856 Incandescent

F3 3450 White Fluorescent

D50 5003 Horizon Light

D55 5503 Mid-day Light

D65 6504 Standard daylight, sRGB

D75 7504 Daylight in North

2. The optimization process converges to an acceptable
solution with a certain degree of freedom/spectral
response deviation (highlighted in green in Table 2).

3. The solution does not converge to an acceptable
solution in term of standard deviation among the
filter set (highlighted in red in Table 2).

These three cases are illustrated in Fig. 11. The first
column shows the resulting set of filters for N = 3, 5, 8
and 12, for which the optimization process converges
successfully. So the integration for each area curve is
quite constant along the wavelengths, and decreases with
the number of channels N. We can clearly distinguish,
for example, the shape contribution of the sensor sen-
sitivity in Fig. 2 when using for example 12 filters and
illuminant E.
The middle column is for the case where the optimiza-

tion converges and where a minimum standard deviation
among the filters is acceptable. Here, the D series of the
illuminants, which have a globally homogeneous shape,
are used. These are not very far from each other in term
of emissivity, and the optimization succeeded.
The third column shows the case where the optimiza-

tion process fails to recover proper filter shapes within
this set of constraints. It is due to the fact that we use too
many different viewing illuminants from which the shapes
of emissivity are too far from each others. The transmis-
sion peaks remain at the minimal value (0.3) and the filters
are not optimized since the standard deviation is more
than 50% of the energy mean among the bands. Neverthe-
less, it is important to note that a good convergence could
be found if constraints like Bmin, P or Q are adjusted and
relaxed.
For comparison with a practical case, the response of

the real camera design presented in Fig. 1 has a response
mean of 3.8255 and a standard deviation of 1.71 through
illuminant E. It typically corresponds to the case where the
filters are not well optimized energetically.

Specific scenarios
To illustrate our method in practice, we propose to study
three specific scenarios.
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Table 2 Optimization for different illuminant sets. Constraint parameters, in common for all optimization results, are: Bmin = 0.3,
Bmax = 1.0, P = 1 and Q = 3

N = 3 N = 5 N = 8 N = 12

Illuminant Mean STD Mean STD Mean STD Mean STD

E (Fig. 11) 7.41 0.03e−4 4.64 0.26e−4 2.71 0.14e−4 1.77 0.08e−4

D50 6.88 0.36e−4 3.67 0.17e−4 2.18 0.03e−4 1.50 0.04e−4

D65 5.38 0.24e−4 3.34 0.07e−4 2.23 0.08e−4 1.58 0.09e−4

D65-D75 4.65 0.35 3.04 0.22 2.06 0.16 1.40 0.11

D55-D65-D75 4.63 0.56 3.07 0.42 1.99 0.28 1.34 0.19

D series (Fig. 11) 4.51 0.68 3.08 0.47 1.93 0.31 1.31 0.21

D65-A-E (Fig. 11) 3.80 1.53 2.27 0.95 1.42 0.60 0.95 0.40

D65-A-F3 2.65 1.53 1.41 0.96 0.88 0.61 0.59 0.40

We study first the case of underwater imaging, where
absorption of ocean water [48] is added in the model
presented in the methods section. We use a visible range
of wavelength (380 − 780 nm), one projector illuminant
(tungsten), and 3 bands. A result of optimization with
multiple parameters is shown in Fig. 12(a). We obtain an

average score of 2.29 and a standard deviation of 6.74e−6.
The optimization process succeeds in finding a mini-
mum for the objective function in this case. The ocean
water has a noticeable absorption in the red wavelength
(between 700 and 780 nm), but we notice that the third
"red" filter has a reduced transmission value than the

Fig. 11 General results under illuminant E, [D50,D55,D65,D75] and [D65,A,E] (from left to right). Parameters in common for all optimizations:
Bmin = 0.3, Bmax = 1.0, P = 1 and Q = 3. Corresponding response means and standard deviation are shown in Table 2
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Fig. 12 Specific scenarios. a Underwater typical environment with evenly-spaced peak centers. b Underwater typical environment with manual
peak center selection at 440, 540 and 590 nm, chosen such as in the optimized color camera described in [49]. c Typical colorimetric camera setup
for color imaging. Illuminants used: D50-D55-D65-D75. d Typical multispectral camera for computer vision. Illuminants used: A-D65-F3

first one. It could be explain by the fact that the tung-
sten illuminant has a emission even lower in the range of
380−500 nm, which explains why the optimized filters are
compensated.
Another option is proposed on Fig. 12(b), where the

peak sensitivities have been chosen according to the
optimized sensitivities proposed by Parmar et al. [49]. We
observe that the sensitivities proposed in this last case is
more efficient. Index of quality between two filter banks,
such as in Figs. 12(a) and (b), may be to choose the best
sensitive option coupled with the best results in resulting
color image.
A third case is a typical environment and camera system

for colorimetric imaging purpose in a natural environ-
ment. This case uses 5 bands and performs well under
all D illuminations. By doing the optimization process,
we find an average of 3.07 and a standard deviation of
0.42. The corresponding filters are shown in Fig. 12(c).
Here, the optimization process converges to an acceptable
solution with a certain degree of freedom.
A fourth case example in Fig. 12(d) is the typical mul-

tispectral camera scenario for computer vision, where 8
bands in the visible and NIR (380−830 nm) are used. This
scenario works with a relatively large variety of illuminants
(A, F and D65). We obtain an average score of 0.82 with
a standard deviation of 0.60, which is very high and not
acceptable. Here, the optimization process fails to find a
solution, due to the over-constrained environment. This
is due to the selected set of illuminants that shows very
different behaviors in term of spectral emissivity.

Also, for these last two cases, we observe low trans-
mittance peak. Even if this order of efficiency magnitude
is reasonable in practice according to the manufactur-
ing status, this may be taken into account in releasing
the constraints. Also, a larger standard deviation between
the energies of the filters may be considered acceptable.
It is though not too easy to decide on that before to
incorporate noise influence into the simulations.

Discussion
The main contribution of this work is to show that the
energy balance of SFA sensors is reachable in several illu-
mination conditions by using an optimization process
constrained by practical issues.
What we have not addressed here, is how this influences

the actual imaging pipeline in term of noise reduction or
in term of application accuracy. Indeed, we demonstrated
here that we could manage to avoid saturated values while
others would be very noisy low signal. In order to infer
the effect on the complete imaging pipeline and fix/relax
the constraints more accurately, one may either incor-
porate noise evaluation or incorporate this methodology
into a more comprehensive optimization toward spectral
reconstruction, demosaicing or color reproduction. Fur-
ther work includes then the objective definition of the
constraints.
Also, the optical model that we use is rather limited

in practice since filter transmittance are not Gaussian. In
order to demonstrate our purpose, it was not critical since
the FWHM part of the curves are rather similar to real
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filters, however, when it comes to noise and correlation
between channels, it makes no doubt that a more accurate
optical transmittancemodelmust be used.We also did not
address multi-lobe sensitivities, indeed it could be bene-
ficial for increasing the sensitivity of the sensor, however,
the spectral community tends to prefer single-lobes in
order to separate better between wavelengths. Such con-
cept would be nevertheless beneficial for color imaging
based on less than 4 bands. However, with the increasing
of bands, even color will not gain much from multi-lobe
curves.
Our main message is that this problem of energy bal-

ance, which could be reasonably ignored in the case of
CFA or SFA cameras based on large interference filters,
may not be ignored in the SFA case.

Conclusions
We present a framework that permits filter optimization
that achieves energy balance in SFA device configurations.
This method can be useful for a great range of applica-
tions, where multiple captures, noise or dynamic range
are crucial aspects in the final response of the camera.
The implementation permits an investigation on how con-
straints imposed on the system can affect the efficiency
and the reliability of the final product under several illumi-
nation and capture conditions. Various simulations have
been shown to test robustness of the proposed method.
Further work envisions the incorporation of this method-
ology into the application dependent or general pur-
pose filter optimization, its implication into the imaging
pipeline and practical realizations of filter and practical
evaluation of SFA cameras.
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