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Abstract

Anisotropy, Henyey-Greenstein

A phase function is an important characteristic of a scattering medium. A method to derive new analytic phase
functions is proposed. The relation between a phase function and an angle-averaged single-scattering intensity,
derived earlier [M. L. Shendeleva, J. Opt. Soc. Am. A 30, 2169 (2013)], is considered as an integral equation for a

phase function. This equation is classified as an Abel integral equation of the first kind, whose solution is known.
Two phase functions newly derived with this method are presented.
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Background
The radiative transfer equation (RTE), which models
light propagation in scattering media, contains two un-
known functions: the radiance and the scattering phase
function. Usually, the phase function is modeled separ-
ately and then inserted into the RTE. A common ap-
proach to such modelling relies on the use of Mie theory
[1], which models, using the Maxwell equations, the
light scattering from a single spherical particle. Mie the-
ory was also extended to particles of other shapes [2]. In
aerosols and soft tissue, various sorts of averaging over
particle size distributions are applied. After averaging,
the Mie phase function appears to become much
smoother and can be well approximated by a co-called
analytic or parametric phase function.

A widely used one-parametric phase function is that
derived by Henyey and Greenstein (HG) [3]:

1-g2
MG (u) = ; 373 (1)
47 (1 + g*-2gu)

p

where g is a parameter in the range [-1,1] and g is the
cosine of the scattering angle. The phase function is nor-
malized such that
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271[1 plu)dp =1. (2)

A convenient property of the HG phase function is
that the parameter g is identically equal to the anisot-
ropy (or asymmetry) factor g, defined as

4 / 1#P(ﬂ)dﬂ
gr=t
[ RAQLE

(3)

Therefore, g"”i: g for the HG phase function, where

g < 1.
A generalization of the HG phase function was intro-
duced by Reynolds and McCormick [4] as

My C
P = @

where C is the normalization factor,

L ak(1-)™
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for a 20 and C = k/{27in[(1 + k)/(1 - k)]} for a =0. Here
« and k are real parameters, where |k| < 1.
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For a=1/2 the Reynolds—McCormick function
reduces to the HG phase function, and, for a=0, it
reduces to the ellipsoidal phase function
B k

2mln (25) (1 + kK*-2kp)

P (6)

where k is a real parameter related to the anisotropy fac-
tor as

m’_(1+k2) 1
& = T T T k)] @)

where |g"| < 1.

More flexibility for modelling phase functions is ob-
tained by combining two HG phase functions or a HG
phase function with an isotropic phase function or with
a delta function, yielding two-parameter phase functions
[5] or three parameter phase functions [6].

As was pointed out by Selden [7], the main features of
a phase function typically comprise a narrow forward
lobe (corona), a broad diffuse background, and a narrow
backscattering peak (glory). Various analytic phase func-
tions that model these three major components were
proposed by Cornette and Shanks [8], Liu [9], Draine
[10] and many others (see the review of Sharma [11]). It
should be noted that the influence of the choice of the
analytic phase function in photon transport introduces
errors in the determination of optical parameters that
are difficult to evaluate [12].

Another approach to obtaining a phase function is
based on understanding that the phase function can be
found from the RTE itself, provided the radiance is
known at some points. Such inverse problems for solv-
ing the RTE were considered by Zaneveld and Pak [13],
Case [14], and McCormick [15]. The approach includes
the decomposition of the phase function in a series of
Legendre polynomials P,(u),

1 N

p(pn) = . n:obnpn(l")a (8)

where N is finite. The radiance is also extended to a
series of Legendre polynomials and, from the RTE, one
eventually obtains a system of equations for unknown
coefficients b,,.

In this paper, we apply an inverse procedure of a dif-
ferent kind. First, we expand the radiance in successive
scattering orders and then exploit the relation between
the first-order angle-averaged scattering intensity and
the phase function. The first part of this problem was
solved, using the successive order expansion developed
by Paasschens [16], in Shendeleva [17]. Here we focus
on the second part. Consider first a few examples illus-
trating the relation between the first-order scattering in-
tensity and the phase function.
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For the isotropic phase function,

P =1/(4m), ©)

the first-order angle-averaged intensity generated by an
instantaneous point source is [16]

vt+r
ln( ) ,
vE-r

where r is the distance from the point source, ¢ is the
time from the moment of photon emission, v is the
speed of light in the medium, /; is the scattering length,
and H (x) is the Heaviside step function that equals zero
for x < 0 and one for x > 0.

For the linear phase function

H(vt—r)e "/

Iiso —
1 4darvirl

(10)

P () = (1+ 3gu)/ (4n), (11)

where parameter |g| <1/3, the angle-averaged single-
scattering intensity has been found as [17, 18]

{ (1 + 3¢u?)n (i:{”) —6gu},

(12)
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where u = r/(vt).

Generally, there is a one-to-one correspondence be-
tween a phase function and a first-order scattering
intensity. For a given phase function, the first-order
angle-averaged intensity (also called a single-scattering
intensity) can be found from Eq. (21) of Shendeleva [17].
In this paper, we consider an inverse problem: Given the
fist-order angle-averaged intensity, find the correspond-
ing phase function. The integral equation for this
purpose is derived in the next section. Fortunately, this
equation happens to be an integral equation of the Abel
type, whose solutions are known [19]. Sections 3 and 4
provide examples of the application of this equation.

Derivation of the integral equation
The time-dependent RTE for radiance L(?, t,§) is con-
sidered in the form

10L(7,£,5)

Y +3VL(7,t,8) + (s + ) L(7,1,3)

— | PEL(T,0.3)d5 4 S(7 1),
4
(13)

where p(s -§') is a phase function, normalized such that
Janp(3 -8)dé =1, where §' and § are directions before
and after a scattering event, respectively, and y, and p,
are the scattering and absorption coefficients,
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respectively, related to the scattering length [, = 1/y4; and
to the absorption length [, =1/4, An instantaneous
point source is represented by delta functions,

S(7,t) = NOﬁ“’V 8(r)3(2), (14)
where 7w is photon’s energy, and Ny is the number of
photons emitted at ¢£=0. Note that, in the following, we
consider a non-absorbing case, since absorption enters
into the solution through the exponential factor
Exp(-pavt) (16).

The multiple collision approach uses the decompos-
ition of the radiance in successive scattering orders

= Z;:OLN (?a tag)a

where the term with N =0 describes the unscattered ra-
diance, the term with N = lcorresponds to the radiance
scattered once, and so forth. Correspondingly, for the
angle-averaged intensity, which is defined as

L(7,1.5) (15)

1 N gn
Mﬁﬂzﬁlfﬁ¢g@ (16)
we have the expansion
1(7,t) = Z:[IN(T’, t), (17)

where Iy (7, t) is an angle-averaged intensity of the N-s
order defined as Iy = / Ln(7,¢,8)ds/ (4m).
4m

For the first-order scattering, the relation between a
phase function and first-order intensity is obtained as

(17]
:W%/l pw)dé
s Jo () + r2-2ver€’

Li(r,¢) (18)

where 4 is the cosine of the scattering angle 6 and ¢ is
the cosine of the angle a between the direction from the
source to the observation point and the direction from
the scattering point to the observation point (as shown
in Fig. 1 of Shendeleva [17]). Using the notation r=2c,
vt=2a, and c/a=r/(vt)=u, we can express cosines y
and € as

c-x
= 19
¢ a-ux’ (19)
202-a?-uPx>
§= (20)

a—u2x2? ’

where x is a coordinate along the x-axis in the range
[-a,a).

Changing the integration variable in Eq. (18) from & to
u, we transform Eq. (18) to
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Fig. 1 The anisotropy factor g®" versus parameter k for D1 phase
function. For comparison, g”" = k for the HG phase function
is shown
e—vt/ls d
Ii(r,t) = p()du ; (21)
verls J_1 /1-p JX—p
with y = 2u® - 1, where y varies in the range [-1, 1].
Eq. (21) takes the form
X
pp)du
=F(x) (22)

o Vi-p X

and thus can be classified as an Abel integral equation
of the first kind. The solution of this equation is known
to be [19]

_ V1o /“F' 1)dr F(—l) T-u

\/m Vitu
where F' (1) means the derivative with respect to the ar-
gument. Note also the normalization conditions in Eq.

(23). From the normalization of the phase function given
by Eq. (2), one obtains the normalization for F(y),

! 1
[1 F(r)dr:;,

and therefore a single-scattering intensity is normalized as

p(w) (23)

(24)

123 ) vt .
471/0 Li(r,t)ridr = l—e"’t/s, (25)

S
which is consistent with the normalization obtained by
Shendeleva [17].

Examples of solutions

Ellipsoidal phase function

To test the method, consider an ellipsoidal phase func-
tion given by Eq. (6). By direct substitution of this phase
function in Eq. (18), one can find that the ellipsoidal
phase function corresponds to the single-scattering in-
tensity [17]
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ke

2mrvely(1-k)in(AK) (/1 + k> ~2ky
\/ 1+ K2=2ky + (1-k)\/(x +1)/2
1+ K2 =2ky-(1-k)/(x + 1)/2 ’

(26)

I(r.t) =

In

where y = 27 /() - 1.
Vice versa, considering the integral equation (22) with
function

k

2m(1-k)In (3K) /1 + k> -2ky

) 1+ K2 =2ky + (1-k)+/(x + 1)/2
1+ K =2ky-(1-k)/(x +1)/2 7

F(y) =

(27)

one obtains, after some manipulations, the ellipsoidal
phase function (6).

The following considers the integral equations (22)
with the right-hand side of the form

K 1 m+(l—k) +1)/2
ﬂn ’
(L+R-20)" 7\ /14 e —aky-(1-k) (12

(28)

FP(y) =

where K is the normalization factor that depends on par-
ameter k. The superscript Da indicates that expression
(1+%*-2ky) in the denominator enters in degree a.
Consider the following two particular cases.

Phase function D1
In this case, a=1 and the right-hand side of Eq. (22)
takes the form

K, 1+ R=2kx + (1K) T 1)/2
LHE-200 7\ 1k Roakg-(1-0y G F 172

(29)

FP(y) =

where K is found from the normalization condition (24) as

N VIR 2+ 0-0VEFTVE)
= n
T e ==on-g i

(30)

Taking the derivative, one obtains
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(FDI (T))/ —

2K ”< 1+ K=2kt + (1-k) /T +1/ﬁ>
(1 +k2=2kr)” \ V1 + K=2kr-(1-k) VT T 1/v2

N V2(1-k)K
VI+r(1-1)(1+ k2—2kr)3/2'

(31)

Thus, the solution for normalized phase function p™*
is found to be

oy VIF M{ 2% ln< 1+k2—2kr+(l—k)\/r+1/\/§>
P L ek \ ViT R2kr-(—k)Vr ¥ 1/v2

N Va(1-k) } dr

VIF1(1-7)(1+ K=2kr)*? | VBT

// ( 1+ K—2kr + (1- k)ﬁ/f) ar
V14 =2kr-(1-k) T+ 1/V2 ) (1 +K-2k)

(32)

It should be noted that p”*(x) takes on negative values
for k< - 0.8; therefore, the range of parameter k should
be restricted to - 0.8 < k< 1.

The anisotropy factor for this function is calculated as

o L up(u)dp A (1-7)(1 + 37)F'(1)dr

/ llpww . / fF(r)dr

The plot of the anisotropy factor versus parameter k is
shown in Fig. 1. Note that, for - 0.2 < k<1, the anisot-
ropy factor closely follows the linear dependence g = k,
which is characteristic of the HG phase function. In con-
trast to the HG phase function, the phase function D1
has a simple analytic form for the single-scattering
angle-averaged intensity. It is shown in the Appendix
that this fact can be used to approximate the single-
scattering intensity for the HG phase function by the
single-scattering intensity for the D1 phase function. A
plot for the phase function p”'(u) versus the scattering
angle 6 is shown in Fig. 2.

(33)

Phase function D4
Consider the integral equation (22) with the function

2
Q o V1 + =2y + (1-k)/(x + 1) /2 .
(1+K*~2ky) 1+ K=2ky-(1-k)/(x + 1)/2

(34)

FP(x) =

The notation D4 means that expression (1 + k> — 2ky)
enters the denominator in degree 4.

Here, Q is the normalizing factor, which can be analyt-
ically calculated as follows. Changing back to the
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Fig. 2 Phase function p(cos6) versus the scattering angle 6 for the

three phase functions indicated in the figure

variable u2:(X+ 1)/2 in Eq. (34), one can write the
normalization condition as

/ 1 Qln (mww i 1 (35)

0 (1+ k)2—4ku2)4 4

Evaluating the integral with the use of Mathematica,
we obtain

45(1-k)°(1 + k)°
Q = 2 3 4N (36)
47 (45 + 60k + 158k> + 60k” + 45k*)

Therefore, the single-scattering intensity correspond-
ing to FP*(x) can be written in the form

45(1-k)°(1 + k)’e /5 H(1-u)
dmvirl; (45 + 60k + 158K> + 60k® + 45Kk*) [(1 + k)*~aku?]"

D4 _
7" =

(1 + k)*—dku? + (1-k)u

(1 + k)*—4ku?-(1-k)u
(37)

Calculating the derivative

(FD4(T))’ _

_ 8kQ n( 1+ K2-2kr + (1-/()\/?1“1/&)
(1+K-2k1)" \ V1+K-2ke-(1-k)V7+ 1/V2
N V2(1-k)Q 7
(1-0)VI+7(1+ k2—2kr)9/2

(38)

one obtains the phase function in the form
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8k
(14 k*-2kr)°

P =2 [

ln( 1+ K2-2kt + (1-k)/(7 + 1)/2)
V1 + 2=2kr-(1-k)\/(t + 1)/2
N V2(1-k) dr
(1-n)Vi+z(1+ k2—2kr)9/2 VAT
(39)

where Q is given by Eq. (36).

Figure 3 shows the anisotropy factor g* versus
parameter k. It can be seen that the curve g**(k) is
closely approximated by the curve

g =1-(1-k)* /(1 + k)? (40)
for 0<k<1. A polar plot for the phase function p”*(x),
and also for p”'(u), is shown in Fig. 4. It should be
noted that, for polar plots, it is convenient to make
the change of variable 7+1=(1+x)(1-%%), which
transforms the integral in Eq. (39) to the integral with
constant limits

8k
[(1+ 0 -2k(1 + ) (197)]°

P =2

(1 + k)*=2k(1 + @) (1-92) + (1-k) Qtuiy) ”;(l_yz))
In

2
VL + k=21 +,4)(17y2)7(14<)\/w
V2(0K) }dy.
VIF YT + 21+ @] (1 4+ K)*-2k(1 + w)(1-92) 7
(41)

+

The use of the phase function D4 will be shown
elsewhere.

1
0.5
c
S
o -1 -0.5 0.5 1
-0/5
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D4 _1
k
Fig. 3 The anisotropy factor g°” versus parameter k for the D4 phase
function and the HG phase function. The curve g% =1 —(1—K%/(1 +
K)? for 0 < k < 1 is indicated by the dashed line
- J
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Fig. 4 Polar plot for the D1, D4 and HG phase functions for anisotropy factor g = 0.71
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Conclusion

We have derived an integral equation that relates a phase
function and an angle-averaged intensity for the first-
order scattering, Eq. (21). The solution of this equation,
classified as an Abel integral equation of the first kind, can
be readily written down as given by Eq. (23). Then, we
consider several examples of application of this equation.
The first example is merely illustrative, since it concerns
the ellipsoidal phase function for which the first-order in-
tensity is known. This example is useful in the sense that
it gives an idea of what the first-order intensity can look
like. In the two subsequent examples, small modifications
of the fist-order intensity allow us to derive two new one-
parameter phase functions. The first one, denoted by D1,
has the useful property that its anisotropy factor is practic-
ally identical to the parameter of the phase function (in
the range — 0.2 < k< 1). The same property is characteris-
tic of the HG phase function. Although the function D1 is
more complicated than the HG phase function, it has a
very simple first-order scattering intensity. The second
phase function, D4, has a simple algebraic relation (in the
range 0 < k < 1) between the anisotropy factor and the par-
ameter of the phase function, as given by Eq. (40). These
examples show that, through small modifications of the
single-scattering intensity, one can derive new phase func-
tions with useful properties.

Appendix

Approximation of the single-scattering intensity for the
HG phase function

For the HG phase function, the single-scattering inten-
sity is derived in the form [17, 20]

(e-r22)
V2t2*r212)<1*g)2 + 4g(v2t2—r2)}
(42)

3

HG N (l—gz)e"’t/l‘ 1
e

Reilly and Warde [20] derived this expression for use
in non-line-of-sight communications. For practical pur-
poses, it would be useful to find an approximate analyt-
ical expression for this integral. Here, we propose
approximating this expression by the first-order intensity
found for the D1 phase function, since it has k~ g (for
- 0.2 <k<1), similar to g = ¢ for HG. Thus, we obtain

(1+g¢)°-4gu + (1-g)u
in
] :

(1+g)*-4gu>-(1-g)u

K(g)e "/

HG
L) virls[(1 + g)*-4gu?

(43)

for — 0.2 < g < 1. Here, K(g), defined by Eq. (30), depends only
on g and, therefore, the dependence of I%/%(r, t) on r and t is
obtained in analytical form. Moreover, for K(g), we find an
approximation K(g) ~0.05¢+0.08 for -02<g<1l. As a
spinoff, we also obtain an approximation for the integral

/1 (1-1202)?d) 27(0.05g + 0.08)
0 [(1-4212) (1-¢)? + 4g(1-2)] " w(1-g”)[(1 +¢)"~tgw’]

(1 +g)2—4gu2 + (1-g)u

)

(1+g¢)*-4gu>-(1-g)u
(44)

where - 0.2<g<1 and 0<u< 1. Denoting the left-hand
side of the above equation by Y; and the right-hand side
by Yg, we calculate the relative error of this approxima-
tion as A=(Yz-7Y;)/ Y;. The relative error A for vari-
ous parameters g in shown in Fig. 5. It can be seen that
the error is biggest for u# = 0. The error, which is bigger
for large g, is decreasing in absolute value with increas-
ing u and, in the region 0.8 < u < 1, it is less than 5%.

0.05

-0.05

-0.1

-0.15

-0.2

Fig. 5 Relative error A versus a dimensionless variable u for the

integral approximation given by Eq. (A3)
.
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