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Abstract

For visible light communication (VLC), the light signals are transmitted without optical fibers or any sort of
wave-guiding. Due to the inherent broadcast nature, physical-layer security emerges as a promising method to
protect information delivery from eavesdropping. As for the secrecy capacity of VLC channel, there exist two features.
In one way, the limited optical power makes the common capacity expressions in radio-frequency (RF)
communication unapplicable for VLC. In another way, several correlated geometrical parameters directly alters the
Lambertian model of indoor VLC channel, which gives the secrecy capacity more meanings. However, the issue
considering both aspects has not been studied recently. In this paper, from the practical scenarios, we extract a typical
geometrical model to reveal the mobility principles of the legitimate receiver and the eavesdroppers. Then, we
character two typical distributions of the geometrical parameter. Correspondingly, we derive the upper and lower
bounds on the average secrecy capacity, which have the closed forms. Finally, simulation results show that our upper
and lower bounds are tight at high optical signal-to-noise rates (OSNRs). Moreover, the geometrical features of VLC
systems and distribution parameters of the receiver mobility are effectively reveal by the bounds.

Keywords: Visible light communication, Geometrical property, Average secrecy capacity, Upper and lower bounds

Introduction
In recent years, because of the light-emitting diodes
(LEDs) widely deployed for energy conservation in prac-
tical illumination, visible light communication (VLC) is
currently considered as one of the most indispensable
green communication technologies and has attracted con-
siderable attention [1–3]. For VLC, despite LOS prop-
agation and better signal confinement, the light signals
are transmitted without optical fibers or any sort of
wave-guiding. The inherent broadcast nature makes VLC
links inherently susceptible to eavesdropping by unin-
tended or unauthorized users having access to the physical
area illuminated by the data transmitters. Typical sce-
narios include public areas such as classrooms, offices,
libraries, cafes and so on. Therefore, physical-layer secu-
rity emerged as a promising method [4] to complement
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conventional encryption techniques and provide a first
line of defense against eavesdropping attacks.
By contrast to radio-frequency (RF) communication,

there exist two main features in the secrecy capac-
ity. Intensity modulation with direct detection (IM/DD),
which modulates the input data into the light beams emit-
ted from LEDs [5–7], is always employed in indoor VLC
system.
Feature 1: The optical intensity signals are limited to

be a nonnegative real variable and ought to be less than
the eye-safety standard[5, 6]. So, Gaussian distribution is
not necessarily followed by the capacity-achieving input
distribution [8], thus making the secrecy capacity expres-
sions in RF communication not suitable for VLC.
Feature 2: Compared with the log-normal or Gaussian

distribution, the Lambertian is often assumed to be a
model of indoor VLC channel, which directly changes
with several geometrical parameters, relating to the trans-
mitters and receivers spatial locations [5–7]. Obviously,
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the geometrical feature give the secrecy performance of
VLC channels more meanings.
In [9], Shannon pioneered the framework of

information-theoretic security. Wyner in [10] proposed
a fundamental infromation-theoretic security measure,
termed as the secrecy capacity. Motivated by Wyner’s
work, many studies [11–16] on the secrecy performance
of Gaussian wiretap channels were considered. However,
despite that there exist many studies on the secrecy
performance for RF communication, the corresponding
study for VLC channel is rare.
As for IM/DD channels, Shannon referred to the chal-

lenge in deriving an analytical capacity expression for
peak-limited channels [17]. In [8], the upper and lower
capacity bounds were derived with the additive Gaus-
sian channel, while a discrete Gaussian distribution is
utilized in [18] to research the problem [19–22] studied
the capacity bounds of optical wireless channels. Fur-
thermore, as for the secrecy performance, [23] derived
the lower and upper bounds on the secrecy capacity of
the scalar Gaussian wiretap channel subject to amplitude
constraints. Mukherjee [24] analyzed the secret-key trans-
mission strategy of multiple-input single-output (MISO)
VLC systems after deriving the upper and lower bounds.
Shen et al. [25] employed transmit beamforming and jam-
ming techniques to enhance the secrecy for MISO-VLC
systems. However, they all didn’t consider the geometri-
cal property of indoor VLC systems. Particularly, although
[26] derive the closed-form analytical expressions for
secrecy outage probability and the average secrecy capac-
ity, the study was based on the secrecy capacity expression
of Gaussian channel. From the above, the issue consider-
ing both features has not been studied currently.
Because of the above-mentioned factors, in this paper,

we research the relation between the secrecy capacity
with the geometrical property, based on the power-limited
channel capacity. Particularly, we extract a typical geo-
metrical model from the practical scenarios, which reveals
the mobility principles of the legitimate receiver and the
eavesdroppers. Then, we character two typical distribu-
tions of the geometrical parameter. Accordingly, the upper
and lower bounds of the average secrecy capacity are
derived, which have the closed forms and are related to the
geometrical parameters of VLC systems and distribution
parameters of the receiver mobility. Finally, simulation
results show that our upper and lower bounds are tight
at high OSNRs and the geometrical feature are effectually
revealed.
For conciseness, the key notations throughout the paper

are summarized in the following Table 1.

Systemmodel
In this paper, a typical indoor VLC system is considered,
which with a LED as the transmitter and a photo-detector

Table 1 Key notations used in this paper

Notations Explanation

Cs Secrecy capacity

Cs Average secrecy capacity

A Peak power

ε Average power

α Optical average-to-peak power ratio

Ex(·) Mean value of a variable to x.

φ Emergence angle

ψ Incidence angle

m Lamberts mode order

� 1
2

Transmitter half-power semiangle

R Illumination region

l Vertical distance

di Receiver and center distance

Oi Center of di mobility region

ui Radius of di mobility region

ζi Standard deviation of Gaussian distribution

(xi , yi) Coordinate of the receiver

f (di) The PDF of di

ti Distance of Oi and center

ti1, ti2 Coordinate of Oi

as a legitimate receiver. Moreover, there exist some eaves-
droppers, which locate in the same communication region
and try to eavesdrop the information between the LED
and the legitimate receiver. As shown in Fig. 1, the sce-
nario is common, such as the office, the classroom, the
airport lounge and so on.
The signals received by the legitimate receiver and the

ith (i ≥ 1) eavesdroppers are given by

Y = h0X + w0,
Zi = hiX + wi,

(1)

where w0,wi ∼ NR

(
0, σ 2) denote the additive Gaussian

noise. For simplicity, let us denote the legitimate receiver
as the 0th receiver.

1. Optical Power Constraint. For illumination and eye-
safety consideration, the optical average power ε, the
input signal X, and peak power A are constrained as

Pr(0 ≤ X ≤ A) = 1, (2)

E[X]≤ ε, (3)
X ∈ R

+
0 . The optical average-to-peak power ratio

(APPR) is defined as

α � ε

A
, (4)
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Fig. 1 The sketch map of a typical indoor VLC system and the Lambertian model parameters expression

where 0 < α ≤ 1.
2. Geometrical Property. Although RF channel often

considers multipath effect, line-of-sight (LOS) path is
often assumed to exist in the typical indoor
point-to-point channel. The channel gain hi, (i ≥ 0)
is derived by the Lambertian model [8, 9] as

hi =

⎧
⎪⎨

⎪⎩

Sr (m+1)
2πD2

ij
cosm (φ) cos (ψ) , 0 ≤ ψ ≤ 
c,

0,ψ > 
c,
(5)

where φ is the emergence angle of transmitter and ψ

being the incidence angle of receiver. Sr is the
detector acreage, Dij denotes the distance between
the transmitter and receiver, and 
c is the detector
field-of-view (FOV) semiangle. � 1

2
is the transmitter

half-power semiangle. The Lamberts mode order is
derived by

m = − ln(2)

ln
(
cos

(
� 1

2

)) . (6)

In this paper, let φ = ψ and meanwhile cos(φ) =
cos(ψ)= l

D . Additional, (5) can be rewritten as

hi = Sr(m + 1)l(m+1)

2π
(
l2 + d2i

)m+3
2

, (i ≥ 0). (7)

When scenario is given, the Sr , m being fixed, h is related
to the movement of the receiver, calculated by l and di.

M = l · tan� 1
2
represents the maximum value of d,

which is the radius of illumination region R. Here, The
distribution of di under the given l mainly attract our
attention.

d2i = x2i + y2i , (i ≥ 0), (8)

where xi, yi are the coordinate values.
According to the distinct features of VLC channel, our

problem can be summarized as follows:
Problem 1:
Considering the geometrical property and the opti-

cal power constraint, how to derive the closed-form
expression for average secrecy capacity. Themathematical
model involved is given as ([27])

C̄s = Eh0,hi [ Cs]

= Eh0,hi

[
max
pX

(I(X;Y ) − I(X;Z))

]

s.t.
{
Pr(0 ≤ X ≤ A) = 1
E[X]≤ ε.

(9)

Combining (7) and (9), the average secrecy capacity C̄s
of the legitimate receiver with the ith (i ≥ 1) eavesdropper
can be given as
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C̄s(h0, hi) = Eh0,hi [ Cs(h0, hi)]
= Ed0,di [ Cs(d0, di)]

=
∫∫

S0

∫∫

Si

Cs(d0, di)f (d0, di) dτ0dτi

(c0)=
∫∫

S0

∫∫

Si

Cs(d0, di)f (d0)f (di) dτ0dτi,

(10)

where Cs(d0, di) is analyzed in (11), (12) and (13). The
term f (d0, di) is the joint probability density function
(PDF) and the terms of f (d0), f (di) represent the indoor
human mobility, respectively. Without loss of general-
ity, we assume that the mobilities of the eavesdroppers
and the legitimate receiver are independent with each
other. Thus, we have f (d0, di) = f (d0)f (di), making the
transformation of (c0).

Average secrecy capacity
Based on (10), we firstly analyze the bounds on the secrecy
capacity Cs. Then, by characterising the geometrical prop-
erty of the practical scenarios, we extract two typical
distributionmodel of di, (i ≥ 0), which is related to hi, (i ≥
0). Further, we correspondingly derive the lower bounds
on the average secrecy capacity.

Bounds on secrecy capacity Cs

Based on the definition of capacity [28], due to the con-
straints (2) and (3) for VLC, the capacity-achieving input
distribution does not always follow Gaussian distribution
[8]. Thus, the common Shannon formula in RF communi-
cation can not be applied in VLC.
According to [23], the secrecy capacity of the legit-

imate receiver with the ith (i ≥ 1) eavesdropper is
lower-bounded by each of the following two bounds

Cs ≥1
2
log

(

1 + 2h20A2

πeσ 2

)

−
(
1 − 2Q

(
δ + hiA

σ

))
log

2(hiA + δ)√
2πσ 2 (

1 − 2Q
(

δ
σ

))

− Q
(

δ

σ

)
− δ√

2πσ 2
e−

δ2
2σ2 + 1

2
,

(11)

Cs ≥ 1
2
log

6h20A2 + 3πeσ 2

πeh2i A2 + 3πeσ 2 ,

(12)

and is upper-bounded by

Cs ≤ 1
2
log

h20A2 + σ 2

h2i A2 + σ 2 . (13)

Note that as analyzed in [23], the lower bounds and
upper bounds on the secrecy capacity are tight at asymp-
totically high SNR. Where δ is a free parameter such that
δ > 0 and σ 2 is variance of the additive Gaussian noise.
Other parameter is metioned above. Due to that (12)
and (13) have the simpler expression, we will utilize them
to analyze the average secrecy capacity in the following.

Mobility model of di
Here, we firstly model the geometrical distribution of
typical scenarios. For the practical scenarios such as the
classroom, the airport lounge and so on, we tend to move
within a relatively region. Without loss of generality, let
us assume that each receiver locates at a relatively-fixed
region.
Figure 2 shows the sketch of our mobility model. The

ith (i ≥ 0) receiver moves within the corresponding circle
with the radius ui. ti is the distance between the center of
the circle Oi to the center of illumination region. We use
a 3-D cartesian coordinate system at the receivers height
to identify their locations. The origin (0, 0) corresponds to
the room center. Then, we have

0 ≤ (xi − ti1)2 + (yi − ti2)2 ≤ u2i ,
x2i + y2i = d2i ,
t2i1 + t2i2 = t2i .

(14)

where ti1 and ti2 are coordinate of Oi. Although our
human mobility is various from person to person, there
exist some basic principles. Here two typical mobility
types are mainly proposed as follows:

• Type of main location. This means that the possibility
of sitting in a main location is often much larger than
the surrounding area. In the practical restaurant,
cafes and so on, we tend to sit at the desks or the
other relatively-fixed location. Typically, as for the i th
receiver, we model f (di) in (10) as the 2-dimension
Gaussian distribution at the receiver height, i.e.,

f (di) = 1
2πζi1ζi2

e
− (xi−ti1)2

2ζ2i1
− (yi−ti2)2

2ζ2i2 , (i ≥ 0).

(15)

Note that it is simple to extend (15) to the specific
human mobility, by adjusting ζi1, ζi2, ti1, ti2. Here, the
other scenarios are based on a scenario of one LED
and one main location. Furthermore, let us assume1
ζi1 = ζi2 = ζi �= 0. Then, (15) can be transformed as

f (di) = 1
2πζ 2

i
e
− (xi−ti1)2+(yi−ti2)2

2ζ2i , (i ≥ 0). (16)

1Here, we consider the simple case of ζi1 = ζi2 , which can be simply
transformed to the other practical scenarios.
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Fig. 2 The sketch map of a typical indoor VLC system and the parameters in Lambertian model

• Type of random walk. The meaning is that the
possibilities of the receiver at any point within the
circle are same. For example, we often randomly and
steadyly walk in the relatively-fixed region. Typically,
f (di) is modeled as the uniform distribution, i.e.,

f (di) = 1
πu2i

, (i ≥ 0), (17)

and the other random-walk scenarioswhich is based
on it. For the practical random walk2, we can readily
deduce the corresponding average secrecy capacity
with the same manner as the case of (17).

For simplicity, let us make some notations.

T1 �
Sr(m + 1)lm+1

2π
, T2 �

m + 3
2

. (18)

For the legitimate receiver and the ith (i ≥ 1) eavesdrop-
per,

h0L � T1(l2 + t20)
−T2 ,

h0R � T1(l2 + (t0 + u0)2)−T2 ,
hiL � T1(l2 + (ti − ui)2)−T2 ,
hiR � T1(l2 + t2i )

−T2 .

(19)

And then, the following Theorem 1 illuminates the
results for the average secrecy capacity, Appendix A illu-
minates the proof of which.
2Although our mobility may not be the whole regionR, there only exists a
change of the integration region in (10).

For indoor VLC system, the upper bounds on the aver-
age secrecy capacity under different geometrical model
are given as follows:

• 1) When f (di) = 1
2πζ 2i

e
− (xi−ti1)2+(yi−ti2)2

2ζ2i . C̄s is
upper-bounded by

C̄s ≤

⎛

⎝1 − e
− u20

2ζ20

⎞

⎠

⎛

⎝1 − e
− u2i

2ζ2i

⎞

⎠

4
G1(u0, t0,ui, ti),

(20)

C̄s is lower-bounded by one of the following bounds

C̄s ≥

⎛

⎝1 − e
− u20

2ζ20

⎞

⎠

⎛

⎝1 − e
− u2i

2ζ2i

⎞

⎠

4
G2(u0, t0,ui, ti),

(21)

C̄s ≥
⎛

⎝1 − e
− u20

2ζ20

⎞

⎠

⎛

⎝1 − e
− u2i

2ζ2i

⎞

⎠
[

− p3+

p1(h0L) + p1(h0R)
4

− p2(hiL) + p2(hiR)
2

]
.

(22)
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• 2)When f (di) = 1
πu2i

. C̄s is upper-bounded as

C̄s ≤ 1
4
G1(u0, t0,ui, ti), (23)

C̄s is lower-bounded by one of the following bounds

C̄s ≥ 1
4
G2(u0, t0,ui, ti), (24)

C̄s ≥ p1(h0L) + p1(h0R)
4

− p2(hiL) + p2(hiR)
2

−p3. (25)

Among them, p1(·), p2(·), p3 are defined in (54), (55)
and (56). The terms of G1(u0, t0,ui, ti),G2(u0, t0,ui, ti) are
given in (26) and (27).
In Theorem 1,

G1(u0, t0,ui, ti)=log
[
σ 2 + A2T2

1
[
l2 + (t0 − u0)2

]−2T2
]

+ log
[
σ 2 + A2T2

1
(
l2 + t20

)−2T2
]

− log
[
σ 2 + A2T2

1
(
l2 + t2i

)−2T2
]

− log
[
σ 2+A2T2

1
(
l2 + (ti + ui)2

)−2T2
]
,

(26)

G2(u0, t0,ui, ti) = log
[
3πeσ 2 + 6A2T2

1
(
l2 + t20

)−2T2
]

+ log[ 3πeσ 2 + 6A2T2
1 (l2 + (t0 + u0)2)−2T2 ]

− log[ 3πeσ 2 + πeA2T2
1 (l2 + t2i )

−2T2 ]

− log[ 3πeσ 2 + πeA2T2
1 (l2 + (ti − ui)2)−2T2 ] .←−

(27)

Simulation results
In this section, the tightness and the geometrical fea-
ture of our upper and lower bounds on the average
secrecy capacity are analyzed in Theorem 1. We con-
sider a scenario with several users under a LED as our
simulation environment. A

σ
represents the OSNR. High

OSNRs are the practical application zone, because of typ-
ical indoor illumination levels can offer at least 40dB
OSNR at the receiver [5]. Note that we use “Ratio”
to express ui

ζi
. Notation "U-B" denotes the simulation

for the upper bound and Notation "L-B" for the lower
bound.
Figure 3 shows the average secrecy capacity bounds

under l = 1.5m, 2.5m, 3.5m, with di yielding to the Gaus-
sian distribution. Figure 4 plots the similar curves under
different ui

ζi
= 1, 2, 3. Figure 5 shows that under different ti

= 2.2m, 5.2m, 7.2m. As shown in figures, when l increases,
the average secrecy capacity degrades. When the distri-
bution parameters of ui

ζi
, ti increase, the average secrecy

capacity can be improved. As shown in Theorem 1, the
bounds are effective to reveal the geometrical features of
VLC systems and distribution parameters of the receiver
mobility.
Figure 6 shows the average secrecy capacity bounds

under different l, with di yielding to the uniform distri-
bution. Figure 7 plots the similar curves under different
ti.In one way, we can observe that the same principle that
when l increases, the average secrecy capacity degrades.
When the distribution parameters of ti increase, the aver-
age secrecy capacity can be improved. In another way, by
combing Fig. 3 with Figs. 5, 6 with Fig. 7, different PDF of

Fig. 3 Average secrecy capacity under different l, for Gaussian distribution
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Fig. 4 Average secrecy capacity under various ui
ζi
, for Gaussian distribution

the receiver mobility has different secrecy capacity even
if under same parameters. This also reveals the influence
of the geometrical property on the secrecy capacity, as
shown in Theorem 1.
Moreover, according to Figs. 2, 3, 4 and 5, the lower

bound in 22 keeps the relatively-stable gap with the upper
bound in (21), while the lower bound in (23) has a
relatively-varying gap. At the lower OSNRs, the former
gap is smaller than the latter gap. At the higher OSNRs,

the former gap is larger than the latter gap. Due to that
typical indoor illumination levels can offer high OSNR at
the receiver [5], high OSNRs are the practical application
zone. From the results, under different conditions, our
bounds just perform the better tightness at high OSNRs.

Conclusion
Due to the inherent broadcast nature of VLC channels,
physical-layer security emerged as a promising method to

Fig. 5 Average secrecy capacity under different ti , for Gaussian distribution
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Fig. 6 Average secrecy capacity under different l, for uniform distribution

protect information delivery from eavesdropping. There
exist two features within the secrecy capacity. The limited
optical power makes the common capacity expressions
in radio-frequency (RF) communication not suitable for
VLC. In another way, the Lambertian model of indoor
VLC channel directly changes with several related geo-
metrical parameters, which makes the secrecy capacity
more meanings. However, the study considering both
aspects does not been carried out currently. This paper
extracted a typical geometrical model from the practical

scenario to reveal the mobility principles of the legitimate
receiver and the eavesdroppers. Then, by characterizing
two typical distributions of the geometrical parameter,
we derived the corresponding upper- and lower- bounds
on the average secrecy capacity, which have the closed
forms. Simulation results reveal that our bounds are tight
at high optical signal-to-noise rates (OSNRs). Moreover,
the geometrical features of VLC systems and distribu-
tion parameters of the receiver mobility can be effectively
revealed by the bounds.

Fig. 7 Average secrecy capacity under different ti , for Gaussian distribution
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Appendix
For simplicity, let

hi = T1
(
l2 + d2i

)−T2 , (28)

where T1 = Sr(m+1)lm+1

2π , T2 = m+3
2 . For indoor VLC

system,m = − ln(2)

ln
(
cos

(
� 1

2

)) > 0. Thus

T1 > 0, T2 > 0. (29)

Note that in (28) and (33), the subscript of i = 0 is for
the legitimate receiver, while the subscripts of i ≥ 1 are
for the eavesdroppers.
Here, we divide the circle Si, as shown in Fig. 8. For i ∈

[ 0,N], we have

Si = Sil + Sir ,
∫∫

Sil

f (di) dτi =
∫∫

Sir

f (di) dτi = 1
2

∫∫

Si

f (di) dτi, (30)

which means that the possibilities of the receiver di(xi, yi)
locating at Sil,Sir are equal.When di(xi, yi) lies in the half-
circle Sil, we have

ti − ui ≤ di ≤ ti. (31)

When di(xi, yi) lies in the half-circle Sir , we have

ti ≤ di ≤ ti + ui. (32)

By using the polar coordinate system, let

xi = ti1 + ρi cos θi,
yi = ti2 + ρi sin θi.

(33)

Proof of upper bounds (20) and (23)
We derive the upper bounds based on (13) and (10). Then,
we have

C̄s(hB, hE) =
∫∫

S0

∫∫

Si

Cs(d0, di)f (d0)f (di) dτ0dτi

≤
∫∫

S0

∫∫

Si

1
2
log

h2BA2 + σ 2

h2EA2 + σ 2 f (d0)f (di) dτ0dτi

= 1
2

∫∫

S0

log(h2BA2 + σ 2)f (d0) dτ0
∫∫

Si

f (di) dτi

︸ ︷︷ ︸
w1

− 1
2

∫∫

S0

f (d0) dτ0
∫∫

Si

log(h2EA
2 + σ 2)f (di) dτi

︸ ︷︷ ︸
w2

(34)

Based on (28), the terms of w1,w2 are given by

w1 =
∫∫

S0

log
[
σ 2 + A2T2

1
(
l2 + d20

)−2T2
]

· f (d0) dτ0
∫∫

Si

f (di) dτi,
(35)

w2 =
∫∫

Si

log
[
σ 2 + A2T2

1
(
l2 + d2i

)−2T2
]

· f (di) dτi
∫∫

S0

f (d0) dτ0.
(36)

Next, we derive the upper bounds under two typical
distribution.
1) When Gaussian distribution.

For (35) and (36), let us denote

w1 = 1
4π2ζ 2

0 ζ 2
i
a1(d0) · a3, (37)

w2 = 1
4π2ζ 2

0 ζ 2
i
a1(di) · a2, (i ≥ 1) (38)

where the terms of a1(d0), a1(d1), a2, a3 are given in the
following,

a1(di) =
∫∫

Si

(
log

[
σ 2 + A2T2

1
(
l2 + d2i

)−2T2
])

· e−
(xi−ti1)2+(yi−ti2)2

2ζ20 dτ0, (i ≥ 0).

(39)

a2 =
∫∫

S0

e
− (x0−t01)2+(y0−t02)2

2ζ20 dτ0

=
∫ 2π

0

∫ u0

0
e
− ρ20

2ζ20 ρ0 dρ0dθ0 = 2πζ 2
0

⎛

⎝1 − e
− u20

2ζ20

⎞

⎠ .

(40)

Similarly,

a3 =
∫∫

Si

e
− (xi−ti1)2+(yi−ti2)2

2ζ2i dτi = 2πζ 2
i

⎛

⎝1 − e
− u2i

2ζ2i

⎞

⎠ .

(41)



Zhang and Ke Journal of the European Optical Society-Rapid Publications           (2020) 16:11 Page 10 of 13

Fig. 8 The sketch map of a typical indoor VLC system and the parameters in Lambertian model

With T2 > 0 in (29), a2(d0) can be upper-bounded by

a1(d0)
(c1)=

∫∫

S0l

+
∫∫

S0r

(c2)≤ log
[
σ 2 + A2T2

1
[
l2 + (t0 − u0)2

]−2T2
]

·
∫∫

S0l

e
− (x0−t01)2+(y0−t02)2

2ζ20 dτ0+
∫∫

S0r

e
− (x0−t01)2+(y0−t02)2

2ζ20 dτ0

· log
[
σ 2 + A2T2

1
[
l2 + t20

]−2T2
]

= a2
2

(
log

[
σ 2 + A2T2

1 [ l
2 + (t0 − u0)2]−2T2

]
+

log
[
σ 2 + A2T2

1 (l2 + t20)
−2T2

])
,

(42)

where the transformation of (c1) is due to (30) and the
approximation of (c2) is based on (31), (32). Note that a2
is calculated in (40).
The term of a1(di) can be bounded by

a1(di)
(c3)=

∫∫

Sil

+
∫∫

Sir

(c4)≥ log
[
σ 2 + A2T2

1
(
l2 + t2i

)−2T2
]

·
∫∫

Si

e
− (xi−ti1)2+(yi−ti2)2

2ζ2i dτi+
∫∫

Si

e
− (xi−ti1)2+(yi−ti2)2

2ζ2i dτi

· log
[
σ 2 + A2T2

1
(
l2 + (ti + ui)2

)−2T2
]

= a3
2

(
log

[
σ 2 + A2T2

1 (l2 + t2i )
−2T2

]
+

log
[
σ 2 + A2T2

1
(
l2 + (ti + ui)2

)−2T2
])

,

(43)

where the transformation of (c3) is due to (30) and the
approximation of (c4) is based on (31), (32). Note that a3
is calculated in (41).
Finally, combining (34) with (42), (43), we can obtain

C̄s(hB, hE) ≤ 1
2
(w1 − w2)

= 1
8π2ζ 2

0 ζ 2
i
[ a1(d0) · a3 − a1(di) · a2]

≤ a2 ∗ a3
16π2ζ 2

0 ζ 2
i

·
(
log

[
σ 2 + A2T2

1 [ l
2 + (t0 − u0)2]−2T2

]

+ log
[
σ 2 + A2T2

1
(
l2 + t20

)−2T2
]
−

log
[
σ 2 + A2T2

1 (l2 + t2i )
−2T2

]
−

log
[
σ 2 + A2T2

1 (l2 + (ti + ui)2)−2T2
])

=

⎛

⎝1 − e
− u20

2ζ20

⎞

⎠

⎛

⎝1 − e
− u2i

2ζ2i

⎞

⎠

4
G1(u0, t0,ui, ti).

(44)

This completes the proof of (20).
2) When uniform distribution.
For the ith (i ≥ 0) receiver,

∫∫

Si

f (di) dτi = 1
πu2i

∫ 2π

0

∫ ui

0
ρi dρidθi = 1. (45)
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Then, using the similar method of proofing (44), we have

C̄s(hB, hE) ≤ 1
2
(w1 − w2)

≤

∫∫

S0

f (d0)dτ0

4
·
(
log

[
σ 2+A2T2

1
[
l2+(t0−u0)2

]−2T2
]

+ log
[
σ 2 + A2T2

1
(
l2 + t20

)−2T2
])

−

∫∫

Si

f (di)dτi

4

(
log

[
σ 2 + A2T2

1
(
l2 + t2i

)−2T2
]

+ log
[
σ 2 + A2T2

1
(
l2 + (ti + ui)2

)−2T2
])

= 1
4
G1(u0, t0,ui, ti).

(46)

This completes the proof of (23).

Proof of lower bound (21) and (24)
We derive the upper bounds based on (12) and (10). Then,
we have

C̄s(hB, hE) =
∫∫

S0

∫∫

Si

Cs(d0, di)f (d0)f (di) dτ0dτi

≥
∫∫

S0

∫∫

Si

1
2
log

6h2BA2 + 3πeσ 2

πeh2EA2 + 3πeσ 2 f (d0)f (di) dτ0dτi

=
∫∫

S0

log
(
6h2BA2 + 3πeσ 2)

2
f (d0)dτ0

︸ ︷︷ ︸
b1(d0)

∫∫

Si

f (di)dτi

︸ ︷︷ ︸
b3

−
∫∫

S0

f (d0)dτ0

︸ ︷︷ ︸
b2

∫∫

Si

log
(
πeh2EA

2 + 3πeσ 2)

2
f (di)dτi

︸ ︷︷ ︸
b1(di)

= b1(d0) · b3 − b2 · b1(di).
(47)

1) When Gaussian Distribution. It is easy to know that

b2 = a2/
(
2πζ 2

0
)
, b3 = a3/

(
2πζ 2

i
)
, (48)

where a2, a3 are in (40) and (41). Applying to the similar
method of proofing (44), we have

b1(d0) ≥b2
4

(
log

[
3πeσ 2 + 6A2T2

1
(
l2 + t20

)−2T2
]
+

log
[
3πeσ 2 + 6A2T2

1
(
l2 + (t0 + u0)2

)−2T2
])

,

(49)

b1(di) ≤b3
4

(
log

[
3πeσ 2 + πeA2T2

1
(
l2 + t2i

)−2T2
]
+

log
[
3πeσ 2 + πeA2T2

1
(
l2 + (ti − ui)2

)−2T2
])

,

(50)

Then, the average secrecy capacity is lower-bounded by

C̄s(hB, hE) =
∫∫

S0

∫∫

Si

Cs(d0, di)f (d0)f (di) dτ0dτi

≥ b1(d0) · b3 − b2 · b1(di)

≥

⎛

⎝1 − e
− u20

2ζ20

⎞

⎠

⎛

⎝1 − e
− u2i

2ζ2i

⎞

⎠

4
·
(
log

[
3πeσ 2 + 6A2T2

1
(
l2 + t20

)−2T2
]

+ log
[
3πeσ 2 + 6A2T2

1
(
l2 + (t0 + u0)2

)−2T2
]

− log
[
3πeσ 2 + πeA2T2

1
(
l2 + t2i

)−2T2
]

− log
[
3πeσ 2 + πeA2T2

1
(
l2 + (ti − ui)2

)−2T2
])

�

⎛

⎝1 − e
− u20

2ζ20

⎞

⎠

⎛

⎝1 − e
− u2i

2ζ2i

⎞

⎠

4
· G1(u0, t0,ui, ti).

(51)

2) When Uniform Distribution. It is easy to get

C̄s(hB, hE) ≥ 1
4
G1(u0, t0,ui, ti). (52)

This completes the proofs of (21) and (24

Proof of lower bounds (22) and (25)
For simplicity, let us denote the lower bound in (11) as

CL1(hB, hE) �
p1(hB)

2
− p2(hE) − p3, (53)

where the functions of p1(x), p2(x), p3 are

p1(x) = log
(
1 + 2x2A2

πeσ 2

)
, (54)

p2(x) =
(
1 − 2Q

(
δ + xA

σ

))
log

2(xA + δ)√
2πσ 2 (

1 − 2Q
(

δ
σ

)) ,

(55)

p3 =
(
Q

(
δ

σ

)
+ δ√

2πσ 2
e−

δ2
2σ2 − 1

2

)
. (56)

We can observe that p1(hB) has no relation with hE ,
while p2(hE) has no relation with hB. Moreover, p3 has no
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relation with hB, hE . Then, the corresponding C̄s(hB, hE)
can be lower-bounded as

C̄s(hB, hE) ≥
∫∫

S0

∫∫

Si

CL1(hB, hE)f (d0, di) dτ0dτi

=
∫∫

S0

∫∫

Si

(
p1(hB)

2
− p2(hE) − p3

)
f (d0, di) dτ0dτi

=
∫∫

S0

p1(hB)

2
· f (d0) dτ0

∫∫

Si

f (di) dτi

−
∫∫

Si

p2(hE) · f (di) dτi
∫∫

S0

f (d0) dτ0

− p3
∫∫

S0

f (d0) dτ0
∫∫

Si

f (di) dτi.

(57)

Applying to the similar method of proofing (44), (57) can
be further approximated as

C̄s(hB, hE) ≥
∫∫

S0

f (d0) dτ0
∫∫

Si

f (di) dτi

·
[
1
4
p1(h0L) + 1

4
p1(h0R) − 1

2
p2(hiL) − 1

2
p2(hiR) − p3

]
,

(58)

where

h0L = T1
(
l2 + t20

)−T2 , h0R = T1
(
l2 + (t0 + u0)2

)−T2 ,
(59)

hiL = T1
(
l2 + (ti − ui)2

)−T2 , hiR = T1
(
l2 + t2i

)−T2 .
(60)

When Uniform Distribution,
∫∫

S0

f (d0) dτ0
∫∫

Si

f (di) dτi = 1.

When Gaussian Distribution,
∫∫

S0

f (d0) dτ0
∫∫

Si

f (di) dτi =
⎛

⎝1 − e
− u20

2ζ20

⎞

⎠

⎛

⎝1 − e
− u2i

2ζ2i

⎞

⎠.

This completes the proofs of (22) and (25).
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