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Abstract

In this publication, the Luneberg integrals are revisited and the conditions of the using of such integrals have been
recalled. Additivity law of Luneberg’s integrals and the link with the Frenel kernel for the propagation are discussed. By
means of the definition of the Luneberg’s integrals, the propagation of a vectorial electromagnetic field (Hertz
potentials) is developed and a new approach of the computation have been proposed based on Zernike polynomials.
With this new approach simulations of holograms is illustrated in the case of the digital in-line holography with an
opaque disk.
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Introduction
Digital in-line holography often uses Fresnel and Fourier
integrals, either to describe the light propagation and to
calculate to the different expressions of amplitude dis-
tribution or to reconstruct the image of the object from
the recorded holograms. In the case of in-line hologra-
phy, these integral operators consider three main essential
parameters for the holographists: the distance z between
the object and the recording plane of the hologram, the
diameter D of the object [12] or the wavelengths λ in the
case of multi-wavelength holography [11, 15, 27]. How-
ever, these descriptions do not include finer parameters
of optics such as light polarization. The models used
in holography are indeed often based on scalar diffrac-
tion models. Some methods using machine learning [29]
appeared recently in three-dimensional vector holography
studies. Although all these studies yields to remarkable
results, the vectorial nature of light is considered too
complex to propose and use explicit descriptions. How-
ever, works have already been carried out and are yielding
remarkable results [6, 8, 31]. Taking into account polar-
ization in digital holography would enrich the domain
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of applicability and the accuracy of this technique. The
Rayleigh-Sommerfeld integrals, type I or type II depend-
ing on the circumstances (near field, far field) are the most
naturally used integral forms in vector diffraction models
[30].
In this article, we develop a vectorial model applied

to the digital in-line holography. We use the Luneberg
integral that tends to the second Rayleigh–Sommerfeld
diffraction integral [20] in the far-field approximation
[17]. Luneberg adressed rigorously and with the high-
est level of attention the boundary value problem of the
equation �u + k2u = 0 for a plane boundary. Two con-
ditions were obtained and will be recalled and analysed in
our article as they are very often neglected in the studies.
For example, Luneberg conditions are not checked in the
case of Gaussian beam.
For several years now, the objects under study by holog-

raphy have become even smaller in size to reach nano-
metric scales [26, 35]. It is therefore clear that the ratio
D/λ becomes a central point of these holography stud-
ies. The Gaussian model cannot be used in the context of
wavelength or sub-wavelength particles [22] and the scalar
model is not sufficient [4].
This is the reason why, based on the work of the authors

of [10], we develop here a vector electromagnetic field
model allowing to describe as precisely as possible the
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holographic patterns delivered by such small objects. In
Ref. [10], a first order approximation of the Luneberg’s
kernel is proposed to obtain a solution to the propagation
of the electromagnetic field vector. This is why in most
publications authors use Luneberg, respectively Rayleigh-
Sommerfeld, and then carry out a far field approximation.
The integrals obtained lose their interest in the near field
with objects whose dimensions do not exceed a few wave-
lengths. Here, we preserve the structure of the Luneberg
integrals while using a vector model of the electromag-
netic field that respects the conditions of Luneberg and
thus allows to describe the interaction with objects of a
few wavelengths. The Zernike polynomials are used as a
basis of decomposition of the electromagnetic field.
This article is organized as follows. First, the Luneberg’s

integrals and their properties are recalled. The condi-
tions of our study are recalled as well. The formalism is
then illustrated with the description of the transition from
Luneberg to Fresnel models. The third part is dedicated
to recall the results of [10] by explaining all the terms of
the electromagnetic field. In our study, this field interacts
with an opaque particle in the sense of holography, which
is here approximated by an opaque disc. The question of
the Luneberg transform of the electromagnetic field on a
finite and infinite opening is treated and we propose semi
analytical and analytical solutions. These solutions are
then used to simulated holograms in various polarization
configurations.

Luneberg’s integrals
Background and definition
It should be noted that an optical system for digital in-line
holography (DIH) is composed of two parts. Each part is
delimited by the source, the object and a CCD sensor. An
illustration is given in Fig. 1. The center of the Cartesian
coordinates system (x, y, z) is placed for example at the
beam waist behind a focusing lens. Around this center of

the system, a dashed line circle, denoted �, is drawn and
illustrates the constant phase of a spherical wave of radius
r. The spherical wave is thus centered at zero. In this arti-
cle, the spherical Hertz potentials are used to define the
vectorial spherical illuminating the object, illustrated in
Fig. 1, by a black disk of diameter D is located at the coor-
dinates (ξ , η, δ). The CCD sensor records is placed at the
distance zl from the object. This sensor records the inten-
sity of the field (i.e. the hologram of the object) hologram
of the object.
A stationary regime of monochromatic electromagnetic

waves in a homogeneous, isotropic, linear, medium with-
out charges andwithout currents is considered. Let P(ξ , η)

be the complex amplitude of the object. This object is then
supposed to be illuminated by a vectorial monochromatic
electromagnetic wave, denoted by Eδ = (Exδ ,E

y
δ ,E

z
δ), that

propagates through linear and homogeneous medium in
regions free of currents and charges. The notation in bold
denotes the vectorial nature of the function and linked to
the polarization state of the wave. From that, the ampli-
tude of the vectorial wave, denoted W δ = (

Wx
δ ,W

y
δ ,W

z
δ

)

just next the object is given by

W δ(ξ , η) = P(ξ , η)Eδ(ξ , η). (1)

Note that if the object P(ξ , η) does not modify the polar-
ization state of the incident wave and if its size is in
order to ten times of the wavelenght or more, the taking
into account of the polarization is of no interest from the
Luneberg operator point of view. Nevertheless, two situ-
ations present a major interest in the taking into account
of the polarization and the Hertz potentials method. The
first is when the object is deformed for example follow-
ing a stretching or when its orientation is modified with
respect to the wave vector. In the first case, a birefrin-
gence may appear and in the second the polarization of
the incident wave can be modified by reflexion even if
the object is considered as a scalar. The polarization state

Fig. 1 Records hypothetical experiment here with δ > 0
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Fig. 2 Profiles of the intensity distribution of holograms simulated with Fresnel and Luneberg integrals with D = 20μm, zl = 18.98mm, δ = 0mm,
N=1024 and λ=633nm

of the incident wave will therefore be modified and jus-
tifies the using of the Luneberg operator. For the second,
the Hertz potentials method is justified by the fact that if
the object is very small in size, of the order of the wave-
length dimension, scalar models are not appropriate. In
the previous example, the object becomes smaller and
smaller during stretching and its dimension may become
equal to a few wavelengths. In all these cases, the func-
tion W δ(ξ , η) becomes vectorial. In the case where the
polarization is taken into account and in the presence of
discontinuous plane, the Luneberg integrals, derived from
the integral theorem of Helmholtz and Kirchoff [5], Eq. 7
on p. 419, can be used to describe the propagation next
the object and their definitions in [20], Eqs. (45.75) on p.
320, according to the system illustrated in Fig. 1 are the
following

Ex
zl (x, y)=− zl

2π

∫∫
Wx

δ (ξ , η)

(
ikr − 1

r3

)
exp(ikr)dξdη, (2)

Ey
zl (x, y)=− zl

2π

∫∫
Wy

δ (ξ , η)

(
ikr − 1

r3

)
exp(ikr)dξdη,(3)

where r2 = (x − ξ)2 + (y − η)2 + z2l with zl = z − δ >

0 due to the δ-shifting along the optical axis. If the third
component is undetermined, it could be derived from (2)
and (3) by means of the Maxwells’equation divEzl = 0
(see Appendix A). We get

Ez
zl (x, y) = 1

2π

∫∫ [
(x − ξ)Wx

δ (ξ , η)

+(y−η)Wy
δ (ξ , η)

]
(
ikr − 1

r3

)
exp(ikr)dξdη,

(4)

where k = 2π/λ is the wave number and Ezl =
(Ex

zl , E
y
zl , Ez

zl ) is the vectorial field in the sensor plane. The
wave Ezl satisfies the Helmholtz equation in the half space
zl > 0. The uniqueness of the solution E i

zl depends on
conditions as mentioned in [20], Eqs. (45.14) and (45.141)
on p. 312. In the domain of the half space zl > 0
there exist a constant A such that the first conditions
are

|E i
zl | <

A
r
,

∣
∣
∣
∣
∣
∂E i

zl
∂r

∣
∣
∣
∣
∣
<

A
r
, (5)

and in any solid sector π/2 + 
 < θ < π/2 − 
 of the
domain zl > 0, there exists a constant B(
) such that
for all points (x, y, zl) of the sector we have the second
condition
∣∣
∣
∣
∣
∂E i

zl
∂r

−ikE i
zl

∣∣
∣
∣
∣
<

B(
)

r2
, r=

√
x2 + y2 + z2, z ≥ δ.

(6)

It is important to note that the conditions in Eq. (5) apply
on the function Wi

δ(ξ , η) too. Indeed, for zl = 0, we have
the boundary limit (see Appendix B)

lim
zl→0

Ex,y
zl (x, y) = Wx,y

δ (ξ , η). (7)

Then, these boundary values are not arbitrary and they
must satisfy the conditions established by Eqs. (5) and (6).
A Gaussian beam can be used but that corresponds to the
paraxial Maxwell equation [19] and do not satisfy the con-
ditions. In the case of a very near field (of the order of a
few wavelengths) or for very focused beams, the Gaussian
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beams are not a solution [13, 14]. The use of Hertz poten-
tials allow to obtain a vectorial spherical wave which
satisfy the Luneberg conditions. From simulation point of
view and by means of fast Fourier transform (FFT), it is
convenient to write the Luneberg integrals as convolution
products. So, by noting Lzl (x, y) the Luneberg kernel, we
have for Eqs. (2) and (3)

E i
zl (x, y) = Wi

δ(x, y) ∗ ∗ Lzl (x, y), i = x, y, (8)

with

Lz(x, y) = − z
2π

(
ikr − 1

r3

)
exp(ikr)

= − 1
2π

∂

∂z

(
exp (ikr)

r

)
,

(9)

and for Eq. (3)

Ez
zl (x, y) = −Wx

δ (x, y) ∗ ∗
[
x
zl

· Lzl (x, y)
]

− Wy
δ (x, y) ∗ ∗

[
y
zl

· Lzl (x, y)
]
,

(10)

Additive law
Let us recall here an important relation called additive
law. This relation is interesting because the axial distance
zl can be viewed as an index from point of view of the
Luneberg integrals. The continuity of the propagation of
the wave corresponds to the continuity of the index and
thus the additive law of the indices. If the Luneberg oper-
ator on the transverse components is denoted by Lzl then

E i
zl (x, y) = Lzl

[
Wi

δ(ξ , η)
]
:= Wi

δ(x, y) ∗ ∗Lzl (x, y). (11)
The propagation of a spherical wave between two planes
separated by a distance zl > 0 could be decomposed into
two propagations of zl1 > 0 and zl2 > 0 with zl = zl1 + zl2

Lzl
[
Wi

δ

] = Lzl1+zl2
[
Wi

δ

] = Lzl2
[
Lzl1

[
Wi

δ

]]
. (12)

We have the continuity of wave propagation. To prove this,
we start from Eq. (8) in the Fourier domain. The used
definition of the Fourier transform is expressed as

f̂ (u, v) = F
[
f (x, y)

]
(u, v)

=
∫∫ +∞

−∞
f (x, y) exp [−i2π(ux + vy)]dx dy,

(13)

where f̂ (u, v) is the spectrum amplitude of f (x, y) and
(u, v) are the spatial frequency coordinates. According to
the property of the Fourier transformation of a convolu-
tion product, in the spectral domain, Eq. (11) over the
distance zl1 leads to

Ê i
zl1(u, v) = F

[
Wi

δ(x, y)
] · F [Lzl1(x, y)

]
. (14)

The evaluation of the Fourier transform of the Luneberg
kernel is realized bymeans of [9], Eq. (A8), p. 112 and gives
us

F
[
Lzl1(x, y)

]=sign(zl1)exp
[
i |zl1|

√
k2−4π2 (u2+v2

)
]
.

(15)

In a similar way, the propagation of Ê i
zl1(u, v) over the

distance zl2, gives

Êz
zl2(u,v)=sign(zl2)Ê i

zl1(u,v)·exp
[
i |zl2|

√
k2−4π2(u2+v2)

]
.

(16)

By introducing Eq. (14) into Eq. (16), we obtain the ampli-
tude spectrum at the distance zl such as

Êz
zl (u, v) = F

[
Wi

δ(x, y)
] · sign(zl1)sign(zl2) exp

[
i (|zl1|

+|zl2|)
√
k2 − 4π2 (u2 + v2

)]
.

(17)

Knowing that zl1 > 0 and zl2 > 0, in the spatial domain,
we have

E i
zl (x, y) = Wi

δ(x, y) ∗ ∗Lzl1+zl2(x, y) = Lzl1+zl2
[
Wi

δ

]
.

(18)

and this is Eq. (12). Note that L0 is the identity operator.

From luneberg integrals to fresnel integral
In digital in-line holography (DIH), the wave propaga-
tion is commonly described by the Fresnel integral in the
convolution form. The definition is given by

E i
zl (x, y) = Wi

δ(x, y) ∗ ∗Hzl (x, y), (19)

where E i
zl andWi

δ are scalar components and

Hz(x, y) = exp(ikz)
iλz

exp
(
i
π

λz
(x2 + y2)

)
. (20)

To study the Luneberg integrals in the far field approxi-
mation, it is sufficient to compare their kernel. We often
see in the literature the case where only one axis of polar-
ization is considered. So, here this situation is studied to
illustrate this transition between the simulated hologram
with Fresnel integral and Luneberg integrals. The first
order Taylor series expansion of the Luneberg kernel gives

Lz(x, y) � Hz(x, y), (21)

under the following condition, see Appendix C

z � max
(
3λ
4π

,
1
4
Nλ

)
, (22)

where the first term is a physical parameter and the
second is linked to digital consideration where N corre-
sponds to the number of samples contained in the image.
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Fig. 3 Comparison of the electric field profiles obtained from the convolution and the analytical calculus with δ = 5λ, zl = 3λ and λ = 633nm

This condition can be used to delimit the two Fresnel
and Luneberg domains. To illustrate the previous con-
sideration about the kernels, holograms with Fresnel and
Luneberg integrals have been simulated where the object
is an opaque disk of diameter D illuminated by a wave
of amplitude unity, i.e. Eδ = (Exδ , 0, 0) = (1, 0, 0) with
δ = 0. The amplitude function P(ξ , η) = 1 − circ(r/R),
with circ(r/R) = 1 if r = (x2 + y2)1/2 ≤ R and 0 oth-
erwise, R = D/2. Of course, the choice of an amplitude
unity do not satisfies the conditions in Eqs. (5) and (6) but
this allows us to demonstrate the behavior of the Luneberg
integrals as regard to on one of the two transverse com-
ponents. So, only one polarization state of the wave has
been considered to retrieve the scalar condition of the
Fresnel integral. The hologram represented in Fig. 2 has
been simulated with zl = 18.98mm. It can be seen from
Fig. 2 that the difference between the holograms simulated
with Fresnel and Luneberg is negligible in the far field
domain. The offset difference is probably due to the ampli-
tude differences at the origin as mentioned by the authors
of [21] in Fig. (9) on p. 515. Nevertheless, if we consider
a shorter distance zl of several wavelengths, the Fresnel
integral applied to scalar waves is not adapted compared
to the Luneberg integral. The next section is then devoted
to combine the vectorial, spherical waves and Luneberg
integrals.

Holography with vectorial spherical waves
Definition of the vectorial spherical waves
The Luneberg conditions require that the object is illumi-
nated by a spherical wave. This polarized spherical wave
must also satisfy the Maxwell’s equations as mentioned
above. The authors of [10] have proposed a solution that
allows both to satisfy Maxwell’s equations but also to
satisfy the conditions of Luneberg whatever the polar-
ization state. This solution uses the Hertz potentials. So,
here we recall the results obtained by adding some sup-
plements and a few modifications. The definition of the
vectorial wave in [10], Eqs. (11) and (12) on p. 734 are the
following

Eδ(ξ , η) = [Me(ξ , η, δ) · pe + Mm(ξ , η, δ) · pm] , (23)

Bδ(ξ , η) = 1
c
[−Mm(ξ , η, δ) · pe + Me(ξ , η, δ) · pm] ,

(24)

where the velocity of light in the vacuum is approxi-
mately equal to c = 3 · 108m/s and the electric vec-
tor and magnetic induction are denoted by (Eδ , Bδ). As
shown by Fig. 1, the radial coordinate r = (

ρ2 + δ2
)1/2

are considered with the circular coordinates (ξ , η) =
(ρ cos θ , ρ sin θ). The polarization states are defined by
peT = (pex pey pez) for electric vector and pmT =
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Fig. 4 Components of the electric and magnetic fields (Eδ , Bδ ) with δ = 5λ, D = 7λ and the polarization pe = (1, 0, 0), pm = (0, 1, 0)

(pmx pmy pmz) for magnetic induction. The upper
symbol T denotes the transpose. The vectorial electro-
magnetic fields satisfy the Maxwell’s equation in regions
free of currents and charges. For this to happen many dif-
ferent steps are needed. Firstly, the Maxwell’s equation
must be rewriting in terms of the magnetic vector and
electric scalar potentials 
e and Am under the Lorentz
gauge. Consequently, and next straightforward process,
we have

Eδ(ξ , η) = −grad
e − ∂Am
∂t

, (25)

Bδ(ξ , η) = curlAm, (26)

with Am = μ0ε0
∂�e
∂t + curl�m. The magnetic vector

and electric scalar potentials are expressed versus the
Hertz electric potential, denoted �e(r, t), and the mag-
netic potential, denoted �m(r, t) by writing that 
e =
−div�e(r, t). The expressions of the vectorial electro-
magnetic fields (Eδ ,Bδ) versus (�e,�m) in exp(−iωt)-
Fourier space are the following

Eδ(ξ , η) = curl curl�e(r) + iω curl�m(r), (27)
Bδ(ξ , η) = curl curl�m(r) − iωμ0ε0 curl�m(r), (28)

where μ0, ε0 are the magnetic permeability and permit-
tivity in the vacuum. The Hertz potentials have to satisfy
the Helmholtz equation on the one hand and the other

satisfy the Luneberg conditions in Eqs. (5) and (6). Con-
sequently, the possible solutions for the expressions of the
Hertz potentials are

�e(r) = exp(ikr)
r

· pe, (29)

�m(r) = exp(ikr)
c r

· pm, (30)

which have a spherical amplitude weighted by a polariza-
tion vector. The parameter ikr is taken positive to obtain
a divergent spherical wave, for example next focusing.
A negative value allows to have a convergent wave. The
celerity c has been introduced to respect the units of the
fields: [Eδ]= V · m−1 and [Bδ]= V · s · m2 with [�e]=
V · m and [�m]= V · s. By introducing the Eqs. (30) and
(29) into (28) and (27), the expression of the matricesMe
andMm, are

Me(x, y, z) =
⎡

⎢
⎢
⎣

−
(

∂2�e
∂y2 + ∂2�e

∂z2

)
∂2�e
∂y∂x

∂2�e
∂z∂x

∂2�e
∂x∂y −

(
∂2�e
∂x2 + ∂2�e

∂z2

)
∂2�e
∂z∂y

∂2�e
∂x∂z

∂2�e
∂y∂z −

(
∂2�e
∂x2 + ∂2�e

∂y2

)

⎤

⎥
⎥
⎦

z=δ

(31)
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and

Mm(x, y, z) = iω ·
⎡

⎢
⎣

0 − ∂�m
∂z

∂�m
∂y

∂�m
∂z 0 − ∂�m

∂x
− ∂�m

∂y
∂�m
∂x 0

⎤

⎥
⎦

z=δ

(32)

The lower index z = δ indicates that the derivations in the
matrices have to be taken at the value z = δ with posi-
tive or negative value of δ. The authors of [10] have been
developed these matrices in circular coordinates (ρ, θ)

and taken a negative value of δ (focal length). In our case,
the general case is considered for our theoretical develop-
ments. This is the reason that absolute values of z appear
in the matrices Me and Mm in Appendix D. Neverthe-
less, we will choose the particular case illustrated in Fig. 1
for our illustrations, i.e. δ > 0. Thus Eqs. (80) and (79)
together with Eqs. (24) and (23) give the expression of the
components of the electromagnetic field illuminating the
object then give the transverse components (Wx

δ ,W
y
δ ) of

the field Wδ(ξ , η) used in the Luneberg integrals Eqs. (2),
(3) and (4).

Theoretical development of the luneberg integrals with
the vectorial spherical waves
The Luneberg operator applies in the same way to the
magnetic field as to the electric field. We will therefore
only deal with the case of the electric field, i.e. Eδ(ξ , η).
From the point of view of the definition of the object, we
have previously mentioned that the amplitude function
P(ξ , η) = 1 − circ(ρ/R), R = D/2. Thus, the amplitude
of the wave in the transverse plane just next the object is
given by

Wi
δ(ξ , η) = Eiδ(ξ , η) − Eiδ(ξ , η) circ(ρ/R) (33)

with i = x, y and ρ2 = ξ2 + η2. The third compo-
nent, i.e. Eq. (4) of the field depends on the first two, i.e.
Eqs. (2) and (3). Next propagation, in the plane of the CCD
sensor localized at the distance zl from the object, we
have

E i
zl (x, y) = Lzl

[
Eiδ(ξ , η)

]− Lzl
[
Eiδ(ξ , η) circ(ρ/R)

]
,
(34)

The first term of Eq. (34) is the reference vectorial wave.
It will be denoted Er

zl = (E rx
zl , E

ry
zl , E rz

zl ). Only the two first
components x and y-axis will be used in the propaga-
tion. The second term of Eq. (34) is the object vectorial
wave. The following “Luneberg propagation of the elec-
tromagnetic fields: the reference vectorial waves” section
deals with the first term of Eq. (34) and the second will be
treated in “Luneberg propagation of the electromagnetic
fields through a pupil” section.

Luneberg propagation of the electromagnetic fields: the
reference vectorial waves

We will be interested here in the propagation of the
electric field through the Luneberg operator without the
boundary plane of the object. Although the integrals of
Luneberg apply on the x- and y-components and the third
one is deduced only from the other two, we let’s never-
theless apply the Luneberg operator Lzl to the matrices
Me and Mm which define the vectorial spherical waves
in order to obtain the interesting components. By means
of Eqs. (8) and (23), we obtain the following result for the
reference vectorial field (see Appendix E)

Er
zl (x, y) = Lzl [Eδ(ξ , η)]

= Lzl
[
Me(x, y, δ)·

]
pe+Lzl

[
Mm(x, y, δ)

]
pm,

(35)

with

Lzl
[
Me(x, y, δ)

] =
⎡

⎢
⎢
⎣

−
(

∂2�e
∂y2

+ ∂2�e
∂z2

)
∂2�e
∂y∂x sign(δ) · ∂2�e

∂z∂x

∂2�e
∂x∂y −

(
∂2�e
∂x2

+ ∂2�e
∂z2

)
sign(δ) · ∂2�e

∂z∂y

sign(δ) · ∂2�e
∂x∂z sign(δ) · ∂2�e

∂y∂z −
(

∂2�e
∂x2

+ ∂2�e
∂y2

)

⎤

⎥
⎥
⎦

z=|δ|+zl

,

(36)

and

Lzl
[
Mm(x, y, δ)

] =

iω ·
⎡

⎢
⎣

0 −sign(δ) · ∂�m
∂z

∂�m
∂y

sign(δ) · ∂�m
∂z 0 − ∂�m

∂x
− ∂�m

∂y
∂�m
∂x 0

⎤

⎥
⎦

z=|δ|+zl

.

(37)

The function sign(x) = x/|x| comes from the z-partial
derivations in thematrices and physically, allows us to take
into account the sign reversal on both sides of the focused
point of the field, at the center of the sphere. The solutions
obtained in Eqs. (36) and (37) are the same expressions as
in Eqs. (31) and (32). The theoretical developments of [10]
can be reinvested by adding the sign function and by shift-
ing along the z axis of the quantity |δ| + zl. It is clear that
when δ > 0 then

Er
zl (x, y) = Me(x, y, δ + zl) · pe + Mm(x, y, δ + zl)pm,

(38)

Then, the Luneberg transformation over zl of the matri-
ces fields Me and Mm at the location δ is the matrices
field at δ + zl. The choice of the potential in the resolution
of the Maxwell’s equations is important from Luneberg
operator point of view. Only the Hertz potentials allows
us to obtain these properties about the propagation. This
results are illustrated in Fig. 3 about the components E rx

zl
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Fig. 5 Double exponential numerical evaluation of the Zernike coefficients for the transverse components of the vectorial field Ẽxδ and Ẽyδ with
δ = 5λ, D = 7λ

and E rz
zl of the electric field where 	 and 
 represent the

real and imaginary parts. These two components are sim-
ulated by means of the convolution product in Eqs. (8,10)
and by means of the matrix expression in Eq. (38). The
initial electric field is localized at δ = 5λ and it propa-
gates over zl = 3λ. The polarizations are pe = (1, 0, 0) and
pm = (0, 1, 0).
The good agreement between these two results allows

us to extract easily from Eq. (38), the transverse compo-
nents next the propagation which will be used in Eq. (34)
without additional theoretical calculus.
Luneberg propagation of the electromagnetic fields through
a pupil

Transverse components This subsection deals with of
the Luneberg propagation of the transverse components
of the vectorial field diffracted by the pupil, i.e. Eqs. (2) and
(3). The product of the field by the pupil will be treated
as a generalized pupil function. Thus, to treat the second
term of Eq. (34), it is now commonplace to expand the
generalized pupil Eiδ(ξ , η) circ(ρ/R) as

Eiδ(ξ , η) circ(ρ/R) =
∑

n,m
γm
ni · Zm

n

(ρ

R
, θ
)
, (39)

in which

Zm
n (�, θ)=R|m|

n (�) · eimθ, 0 ≤ � ≤ 1, 0 ≤ θ ≤ 2π ,
(40)

and where n and m in the summation in Eq. (39) and in
Eq. (40) are integers such that n − |m| is even and non-
negative. The Zernike coefficients γm

ni are obtained by
using the orthogonality of the Zernike circle polynomials
Zm
n , so that

γm
ni = n + 1

πR2

∫ R

0

∫ 2π

0
Eiδ(ξ , η)

circ(ρ/R) · Zm
n

(ρ

R
, θ
)

ρ dρ dθ

= (n + 1)
π

∫ 1

0

∫ 2π

0
Eiδ(R � cos θ ,R � sin θ)

· Zm
n (�, θ) � d� dθ , (41)

with � = ρ/R and the overhead bar indicates complex
conjugation. The Zernike coefficient γm

nx for i = x is
linked to the component field Exδ (ξ , η) and γm

ny for i = y
to Eyδ(ξ , η). Note that Eiδ(ξ , η) = Eiδ(R� cos θ ,R� sin θ) =
Ẽiδ(�, θ). The Zernike coefficients do not have a closed
form. Consequently, the Zernike coefficients γm

ni in
Eq. (39) should be numerically evaluated, for instance by
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Fig. 6 Comparison of the Zernike coefficients between the integral evaluation and the double exponential method of Ẽxδ(s, θ) and Ẽyδ(s, θ) with
δ = 5λ, D = 7λ and the polarization pe = (1, 0, 0), pm = (0, 1, 0). For the x-component of the electric field n = 0(2)20,m = 0 and for the
y-component n = 2(2)20,m = 2

means of the double exponential formula (DE) of numeri-
cal integration [12, 23]. To illustrate the numerical evalua-
tion of the Zernike coefficients, we have been considered
the vectorial electromagnetic field of wavelength defined
in Eq. (23) by extracting the all components limited by
pupil of diameter D = 7λ localized at δ = 5λ. The polar-
ization vectors pe = (1, 0, 0) and pm = (0, 1, 0) which
are linear polarizations. All the electric field components
are represented in Fig. 4 but only the first components of
the electric field will be considered in the paper. To treat
the magnetic field, the same development process shall be
carried out.
The illustrations in Fig. 5 give us the results of the eval-

uation of the Zernike coefficients by the DEmethod of the
vectorial electric field.
The real part, denoted 	, and imaginary part, denoted


, of the Zernike coefficients are represented. The illus-
trations themselves in Fig. 6 represent the comparison
between direct integral evaluation from Eq. (41) and the
DE method.

As we can see, the decomposition of the Ẽxδ (ξ , η) field
gives us dominant Zernike coefficients for m = 0. A few
azimuth coefficients are linked to the small astigmatism
of the field. The interpretation is that the Ẽxδ (ξ , η) compo-
nent has a very slight rotational asymmetry. On the other
hand, the decomposition of the Ẽyδ(ξ , η) component gives
us dominant Zernike coefficients for m �= 0. This implies
rotational asymmetry. From the spectral point of view, the
combination of the Eqs. (8) and (68) and by noting that
from [16], Eq. (5) on p. 2

F
[
Zm
n

(ρ
R
,θ
)]

=2π R2 (−i)m(−1)
n−m
2

· Jn+1(2πσ)

2πσ
exp(i mϕ) , σ ≥0, 0≤ϕ≤2π

(42)

with σ = R
√
u2 + v2 and ϕ = arg(u + iv) allows us to

obtain the spectrum, denoted Ê i
zl (σ ,ϕ), of the second term

of Eq. (34) as
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Ê i
zl =

πD2

2
sign(zl)

∑

n,m
γm
ni (−i)m(−1) n−m

2
Jn+1(2πσ)

2πσ
·eimϕ

× exp

⎛

⎝i
4π |zl|
D

√
D2

4λ2
− σ 2

⎞

⎠

(43)

where

(
D2

4λ2
− σ 2

)1/2
=

⎧
⎪⎪⎨

⎪⎪⎩

√
D2

4λ2 − σ 2 if 0 ≤ σ ≤ R/λ,

i
√

σ 2 − D2

4λ2 if R/λ ≤ σ < ∞.
(44)

For σ ≥ R/λ, this corresponds to evanescent waves in
Weyl’s integral where the evanescent wave attenuate expo-
nentially with increasing zl. This is the basis for the usual
argument that evanescent plane waves can be neglected
sufficiently far away from the zl = 0 plane. The numerical
simulation of Eq. (43) could be realized by using the recur-
rence relations of the Bessel function as solution when

σ = 0. The inverse Fourier transform with a circular
symmetry (Hankel transform) is

E i
zl (s, θ) = F−1

[
Ê i
zl (σ ,ϕ)

]

=
∫ +∞

0

∫ 2π

0
Ê i
zl (σ,ϕ)exp[i2πσ s cos(ϕ−θ)] σdσ dϕ.

(45)

By noting that

∫ 2π

0
exp (i mϕ) · exp (i2πσ s cos (ϕ − θ)) dϕ

= 2π imJ−m (2πsσ) exp(−i m θ), (46)

with Jm the Bessel function of the first kind and of order
m, the expression of the transverse components of the
vectorial field are defined by

E i
zl (s, θ) = 2πω sign(zl)

∑

n,m
γm
ni (−1)

n−|m|
2 exp (i m θ)

∫ +∞

0
exp
(
iβ
√
1−X2

)
Jn+1(2πωX) J|m|(2πωsX) dX,

(47)

Fig. 7 Comparison of Inm(β ,ω, s) between Eq. (51) and Eq. (52-53) and comparison ofJnmk(β ,ω, s) between Eq. (57) and Eq. (58-59) for ω = 3.5,
β = 40.84, n = 4,m = 2 and k = 1
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in which β = 2π |zl|
λ

and ω = D
2λ . The integral in (47) will

be evaluated by considering the ranges [ 0, 1] and [ 1,+∞)

separately.

Longitudinal component This paragraph deals with the
Luneberg propagation of the longitudinal component of
the vectorial field diffracted by the pupil from Eq. (4).
Firstly, by combining Eqs. (4), (39) and considering the
Fourier transform in circular coordinates, the expression
of the spectrum, denoted Êz

zl (σ ,ϕ), of Ez
zl (x, y) with the

same processes of calculus as previously, we obtain

Êz
zl (σ ,ϕ) = −D2

4
∑

n,m
(−i)m(−1)

n−m
2

(
γm
nx cosϕ + γm

ny sinϕ
)
exp(imϕ)

Jn+1(2πσ)

exp
(
i 4π |zl|

D

√
D2

4λ2 − σ 2
)

√
D2

4λ2 − σ 2
. (48)

By noting that
∫ 2π

0

(
γm
nx cosϕ+γm

ny sinϕ
)
eimϕexp (i2πσ s cos (θ−ϕ)) dϕ

= π(i)m
∑

k=0,1

(
γm
ny+i2k+1γm

nx

)
J1+m−2k(2πsσ)ei(1+m−2k)θ ,

(49)

the expression of the longitudinal component in the spa-
tial domain of the vectorial field is defined by

Ez
zl(s,θ)=πω

∑

nmk
(−1) n−m

2 +1(i)1+m−2k−|1+m−2k|

(
γm
ny + i2k+1γm

nx

)
ei(1+m−2k)θ

∫ +∞

0

exp
(
iβ

√
1−X2

)

√
1−X2

Jn+1(2πωX) J|1+m−2k|(2πωsX)X dX.

(50)

As the same way of the integral in Eq. (47), the evalua-
tion of the remaining integral in Eq. (50) will be done by
considering the ranges [ 0, 1] and [ 1,+∞) separately.

Evaluation of the integrals of the Bessel product The
problem of the study of the Bessel function Jν(x) in which
the order ν and argument x are positive, and then the
product of the Bessel functions under the integral, are
usually linked to the ratio x/ν that is less than, nearly equal
to, or greater than unity. In our case, the Bessel functions
depend, on the one hand, on the argument ω and, on the
other hand, on the radial argument s and of ω for the other.
It is clear that when s and ω are large, the power series
expansion of Bessel function converges slowly. Results
have been obtained by the author in [28], Appendix E, pp.
1278-1280 on the integration of a product of two Bessel

functions. However, the experimental context means that
variables such as the radial coordinate of the Bessel func-
tions are less than or equal to unity, limited by a pupil. This
context does not correspond to ours because the variables
are spatial and therefore not limited by the unit. It is there-
fore necessary to choose another approach to evaluate the
integral involving these two Bessel functions. The chosen
approach here is to apply a Zernike expansion of the two
Bessel functions because the excellent convergence and on
the exponential function. In this manner, the diameters of
the object will be able to be increased compared to the
wavelength. Denote by Inm(β ,ω, s), the integral in Eq. (47)
so that

Inm(β ,ω, s) =
∫ +∞

0
exp

(
iβ
√
1 − X2

)
Jn+1 (2πωX)

J|m| (2πωsX) dX. (51)

The evaluation of this integral is given in (F) and yields

Inm(β ,ω, s) = πω

(n + 1)
∑

t,k

[
Gn,|m|
tk (β ,ω)

+Gn+2,|m|
tk (β ,ω)

] J|m|+2t+1(2πωs)
2πωs

+ 1
β2 Jn+1 (2πω) J|m| (2πωs) , (52)

with β � 0 and 0 ≤ k < ∞, 0 ≤ t < ∞ and

GN ,M
tk (β ,ω) = 4(−1)k+t(N + 2k + 1)(M + 2t + 1)

JN+2k+1(2πω)

2πω

N+M
2 +k+t∑

q=0

LCM,N ,0
tkq

2(2q + 1)
Bq(β). (53)

The expression of Bq(β) is in Eq. (95), Appendix (F) and
linked to the R0

2r-expansion. The linearization coefficients
LCM,N ,0

tkq are defined in Eq. (124) in Appendix (F). It can be
computed by recursion. the first two terms of Eq. (52) are
linked to the integration of Inm(β ,ω, s) in the range [ 0, 1]
and the third is linked to the evanescent wave in the ranges
[ 1,+∞). This third term is evaluated by means of the
steepest descent method. The Zernike expansion of the
Bessel function and a linearisation of the product of radial
polynomials are used to obtain the LCM,N ,0

tkq coefficients.
The combination of these steps with the orthogonality of
the radial polynomials gives us GN ,M

tk . Notwithstanding the
condition on β, if β = 0, the Zernike expansion of the
exponential in Eq. (51) is not necessary. As (see Eq. (97))

RM
M+2t(X)RN

N+2k(X) =
N+M

2 +k+t∑

q=0
LCM,N ,0

tkq · R0
2q(X), (54)

thus by orthogonality of the Zernike polynomials
∫ 1

0
RN
N+2k(X)RM

M+2t(X)XdX = 1
2
LCM,N ,0

tk,q=0. (55)
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An another point of view from [24, 36], the outcome of the
integral in Eq. (51) for β = 0 equals to

Inm(0,ω, s) = 1
2πω

(−1)
n−|m|

2 R|m|
n (s), (56)

for 0 ≤ s < 1 and 0 for s > 1. For the second integral in
Eq. (50), denoted as Jnmk(β ,ω, s), so that

Jnmk(β ,ω, s)

=
∫ +∞

0

exp
(
iβ

√
1−X2

)

√
1−X2

Jn+1(2πωX)J|1+m−2k|(2πωsX)X dX,

(57)

this type of integral appears in numerous papers which
have treated the problems of sound radiation from vibrat-
ing circular plates in particular King [18] in which he has
exhibited some useful integral expressions for the acous-
tic pressure. The case of integral like in Eq. (57) arise when
one considers generalization of King’s integral to the non-
radially symmetric pistons. The authors of [1, 2] have been
proposed a new unified method to resolve King’s integral
where the product of two Bessel functions are involved.
In this context, the unified solution are based on the case
of different orders for the Bessel functions but with of
same argument. Here, with the previous results, it is now
possible to propose a new solution for this difficult issue.
Consequently, its evaluation in Appendix (F) gives us the
result

Jnmk(β ,ω, s) =
∑

t,l
Hn+1,|1+m−2k|

tl (β ,ω)
J|1+m−2k|+2t+1(2πωs)

2πωs

− i
1
β
Jn+1(2πωs)J|1+m−2k|+2t+1(2πωs) (58)

with l = 0, 1, · · · , t = 0, 1, · · · , k = 0, 1 and

HN ,M
tl (β ,ω)

= 4(−1)t+l(N + 2l + 1)(M + 2t + 1)
JN+2l+1(2πω)

2πω
N+M

2 +l+t∑

q=0

LCM,N ,0
tlq

2(2q + 1)
Aq(β) (59)

withAq(β) defined in Eq. (126). We will now illustrate and
compare the results. The numerical calculations, illus-
trated in Fig. 7, are based on the comparison of Eqs (51)
and (52-53) as well as Eqs (57) and (58-59). The trunca-
tions of the series are based on the work in [33]. These
simulations are performed in the case where the parame-
ters ω = 3.5 and β = 40.84 that correspond to the optical
parameter λ = 633nm, D = 7λ, zl = 6.5λ. We choose as
degree n = 4, azimuthal m = 2 and k = 1 in Eqs. (57) and
(51). As we can see in Fig. (7), the radial coordinate takes
a maximal value s = 4. The maximum value of s impacts
the computation time and even the possibility of perform-
ing the computation. Indeed, the chose of the approach
to compute the integrals in Eqs. (51) and (57) allows or
not to realize the computation. Compared to the approach
of many linearisation of products of radial polynomials
by Clebsch-Gordan coefficients, the approach by means
of Eq. (54) and with using the recursion allows to sub-
stantially decrease the computation time, typically 116ms
for Eq. (52) and 141ms for Eq. (58), and to increase the
maximal value of s. With s = 2.5, the approach by many
linearisation is not optimal in term of computation time
because the time is around 198s for (51) and 90s for (57).
The Fig. 7 demonstrate that a good agreement is

obtained between the functions Jnmk(β ,ω, s), Inm(β ,ω, s)
and their integral forms evaluated under Mathematica
software. Thus, this concordance will allow us to simulate
a few holograms of opaque particles that we consider to
be common in holography like opaque disks.

Fig. 8 Holograms for different polarizations: linear, transverse electric and transverse magnetic with λ = 0.633μm, δ = 5λ, D = 7λ, zl = 6.5λ,
ω = 3.5 and β = 40.84
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Simulation of the holograms
In this section, we will show the intensity distribution of
the hologram in the quadratic sensor plane, denoted I(s, θ).
Its expression is as follows

I(s, θ) = |Ex
δ+zl |2 + |Ey

δ+zl |2 + |Ez
δ+zl |2. (60)

The intensity distribution has been simulated for various
polarization states of the incident vectorial fields in the
object. The authors of [10] studied the following different
states of polarization: the linear polarisation (pe = (1, 0, 0)
and pm = (0, 1, 0)), the transverse electric (pe = 0, pm =
(0, 0, 1)) and the transverse magnetic (pe = (0, 0, 1), pm =
0) mode of the incident light. For example, in the case of
the transverse electric mode, from Eqs. (23), (31), (32) and
(80), the incident electric field Eδ(ξ , η) is defined as

Eδ = iω ·
⎡

⎢
⎣

∂�m
∂y

− ∂�m
∂x
0

⎤

⎥
⎦

z=δ

= exp(ikr)
2r5

⎡

⎢
⎣

−ρ S(ρ, δ) sin(θ)

ρ S(ρ, δ) cos(θ)

0

⎤

⎥
⎦ :=

⎡

⎢
⎣
Exδ
Eyδ
0

⎤

⎥
⎦ . (61)

The propagation of the field is along the z-axis as men-
tioned by the Luneberg integrals. The components of the
field are perpendicular to the optical axis. These com-
ponents illuminate the object and in the same time are
the reference wave. By means of the Zernike decompo-
sition, the Lunberg’s integrals and the results obtained
and presented previously, the intensity distribution of the
hologram can be evaluated.
As illustrated in Fig. 8, the structure of the holograms

are versus the polarisation states in near field compared
to the far field. Once again, a comparison is made with
the use of the fast Fourier Transformation (see Fig. 9) tool
to check adequacy in the simple manner but now with
the know the functions which compose the results of the
simulations.

Of course, it is possible to use the Jones matrices too.
The x and y-components of the vectorial electromagnetic
field are determined versus pe and pm as previously seen.
From this example, if we place a linear polariser with axis
of transmission angle θ from the horizontal in the plane
before the object, at the output of the polariser, we will
have

[
Ex,oδ

Ey,oδ

]

=
[

cos2 θ 1
2 sin(2θ)

1
2 sin(2θ) sin2 θ

][
Exδ
Eyδ

]

, (62)

where (Ex,oδ ,Ey,oδ ) are the components illuminating the
opaque disk and which will propagate just next the object.
Then, the same process as seen in this paper is used to
simulate the hologram represented in Fig. 10.

Conclusion
We have recalled the definitions of the Luneberg integrals
and the conditions of the uniqueness of the solution of
the boundary value problem of the equation �u + k2u = 0
for a plane boundary. These conditions must be taken
into account each time we want to use a definition of
a wave function. We clearly mentioned that the solution
of the Hertz potentials allows us to obtain a definition
of the vectorial waves that satisfy the Luneberg condi-
tions. Moreover, the Luneberg integrals applied to the
free propagation of the vectorial electromagnetic wave
in matrix form give us the same matrix form to define
the vectorial electromagnetic wave after the propagation.
This central point of the free propagation throughout the
Luneberg integrals allow us to simulate the holograms
because, in the case of the DIH, the reference wave is
necessary to be associated with the objet wave. Like this,
the reference wave conserves the vectorial nature. Con-
cerning the object wave, the approach by means of the
Zernike polynomials has been proposed to evaluate the
propagation integrals where Bessel functions products
appear. Linear and connection coefficients are defined and
recursion relations are proposed to obtain the results for

Fig. 9 Holograms by the FFT method for the same polarizations: linear, transverse electric and transverse magnetic with λ = 0.633μm, δ = 5λ,
D = 7λ, zl = 6.5λ, ω = 3.5 and β = 40.84



Coëtmellec et al. Journal of the European Optical Society-Rapid Publications           (2021) 17:12 Page 14 of 20

the Luneberg integrals of the propagation. The recursion
steps are important to ensure stable, quick and accurate
computations. The knowledge of the model will allow us
in the future to interpret the holographic results. Further-
more, taking into account the vectorial property of the
light allows to access to new analyses by means of the DIH
such as the birefringent objects.
However, it will be necessary to adapt the reconstruc-

tion operators of the image of the object to access the
usual informations such as the size and 3D location.
Indeed, the reconstructions are currently carried out by
means of Fresnel integral or by means of the fractional
Fourier transform. These operators are adapted to the
case of the plane wave while here we are spherical waves.
A metrology on the indices as well as the interpretation
of the reconstructed holograms will require a theoretical
calculation reference standard.
Comparisons between theoretical and numerical results

are illustrated all the paper. Finally, we illustrate digital
in-line holograms with different polarization states and
we use briefly the Jones matrix. Matrices that can be
introduced into the mathematical definition of the object.

Appendix A: Longitudinal component
About longitudinal component, the vector field Ezl =
(Ex

zl ,E
y
zl ,Ez

zl ) must satisfy the Maxwell’s equations in the
vacuum, ie divEzl = 0, then

∂Ez
zl

∂z
= −

(
∂Ex

zl
∂x

+ ∂Ey
zl

∂y

)

. (63)

By introducing Eqs. (2)and (3) into Eq. (63) and by invert-
ing the partial derivations, we have by integration

Ez
zl = 1

2π

∫∫ [
W x

δ(ξ , η)
∂

∂x

(
exp(ikr)

r

)

+W y
δ(ξ , η)

∂

∂y

(
exp(ikr)

r

)]
dξdη.

(64)

With r2 = (x − ξ)2 + (y − η)2 + z2l and

∂

∂x

(
exp(ikr)

r

)
= (x − ξ)

(
ikr − 1

r3

)
exp(ikr), (65)

Eq. (64) can be re-written in the form of convolution
product such as

Ez
zl = −W x

δ(x, y) ∗ ∗
[
x
zl

· Lzl (x, y)
]

− W y
δ(x, y) ∗ ∗

[
y
zl

· Lzl (x, y)
]
.

(66)

Appendix B: Boundary values
we start by the two important relations: firstly, the Fourier
transform of the spherical wave which is a derivation of

Weyl’s plane wave expansion of the spherical wave [9, 34]

F
[
exp(ikr)

r

]
(u,v)= i2π

exp
(
i|z|√k2 − 4π2(u2 + v2)

)

√
k2 − 4π2(u2 + v2)

, (67)

where r2 = x2 + y2 + z2 and secondly the Fourier transform
of the Luneberg kernel

F
[
Lz(x,y)

]
(u,v) = F

[
− 1
2π

∂

∂z

(
exp (ikr)

r

)]
(u, v)

= − 1
2π

∂

∂z
F
[
exp (ikr)

r

]

= sign(z)exp
(
i|z|
√
k2 − 4π2(u2 + v2)

)

(68)

where ∂
∂z |z| = sign(z). From Eq. (8) in the spectral domain,

we have

Ê i
zl (u, v) = F

[
Wi

δ(x, y) ∗ ∗Lzl (x, y)
]
(u, v)

= Ŵ i
δ(u, v) · sign(zl) exp

[
i|zl|
√
k2 − 4π2(u2 + v2)

]
,

(69)

where sign(x) = x/|x|. The limit case give

lim
zl→0+ Ê

i
zl (u, v) = Wi

δ(u, v). (70)

This is Eq. (7) by an inverse Fourier transformation.

Appendix C: Conditions about the far field
approximation of the luneberg’s kernel
As previously written in Eq.(9), the Luneberg’s kernel is
the following

Lz(x, y) = 1
2πz

⎛

⎜
⎝

1

z
(
1 + x2+y2

z2

)3/2 − i
2π
λ

1

1 + x2+y2
z2

⎞

⎟
⎠

× exp
[

i
2π
λ

z
(
1 + x2 + y2

z2

)1/2]

.

(71)

With the first order Taylor series expansion

(1 + X)α = 1 + αX + O[X2] , (72)

where X = (x2 + y2)/z2, Eq. (71) becomes

Lz(x, y) = 1
2πz

(
x2 + y2

z2

[
i
2π
λ

− 3
2z

]
+
(
1
z

− i
2π
λ

))

× exp[ ikz] exp
[
i
π

λz
(x2 + y2)

]
.

(73)

Now, if
∣∣
∣∣i
2π
λ

∣∣
∣∣�

3
2z

, and
∣∣
∣∣−i

2π
λ

∣∣
∣∣�

1
z

(74)

then the Luneberg’s kernel equal to Fresnel’s kernel with
the most restrictive conditions

z � 3
2k

, and z � rmax, (75)

with rmax = max(
√
x2 + y2) is the maximal transverse

radius. This second condition comes from the series
expansion where X 
 1 and corresponds to the paraxial
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Fig. 10 Holograms with linear polarizer θ = π
4 , λ = 0.633μm, δ = 5λ, D = 7λ, zl = 6.5λ, ω = 3.5 and β = 40.84

approximation, for small angles. To introduce the numer-
ical parameter such as the number of sampling N which is
the the number of pixel of the CCD camera, it is necessary
to introduce the instantaneous frequency, denoted fi such
as

fi(x) = 1
2π

∂φ(x)
∂x

, (76)

where the phase φ is the quadratic phase of the Fresnel’s
kernel. Note that, it is possible to refer to this quadratic
phase because we consider that the most restrictive con-
ditions in Eq. (75) are satisfied. Then, the maximal fre-
quency, denoted fimax is reached when x = �x, with �x
is the spatial support of the image. Then fimax = �x

λz . The
sampling frequency, denoted fe, must exceed twice the
maximal frequency. Consequently, by written that fe ≥
2fimax and by considering that the support �x = Nδe with
δe = 1/fe, we obtain

�x ≤
(
1
2
Nλz

)1/2
. (77)

If we suppose that the support �y along y-axis is equal to
�x, then rmax = 1

2 (�x2 + �y2)1/2 and with the condition in
Eq. (75) combined with the Eq. (77), we get

z � max
(
3λ
4π

,
1
4
Nλ

)
(78)

Finally, It is unlikely that the first term is greater than the
second. Consequently, we can consider only the second
term.

Appendix D: Definition of the functions of the
matricesMe andMm
From [10], Eqs. (13) and (14) on p. 734-735 we have, the
expression of the matricesMe andMm are

Me(x, y, z) =

exp(ikr)
2r5

×
⎡

⎢
⎣
P1(ρ, z) + ρ2 P2(ρ, z) cos(2θ) ρ2 P2(ρ, z) sin(2θ) 2zρ P2(ρ, z) cos(θ)

ρ2 P2(ρ, z) sin(2θ) P1(ρ, z) − ρ2 P2(ρ, z) cos(2θ) 2zρ P2(ρ, z) sin(θ)

2zρ P2(ρ, z) cos(θ) 2zρ P2(ρ, z) sin(θ) Q(ρ, z)

⎤

⎥
⎦ ,

(79)

where x + iy = ρ exp(iθ), r2 = ρ2 + z2 and

Mm(x, y, z) =

exp(ikr)
2r5

⎡

⎢
⎣

0 zS(ρ, z) −ρ S(ρ, z) sin(θ)

−zS(ρ, z) 0 ρ S(ρ, z) cos(θ)

ρ S(ρ, z) sin(θ) −ρ S(ρ, z) cos(θ) 0

⎤

⎥
⎦ .

(80)



Coëtmellec et al. Journal of the European Optical Society-Rapid Publications           (2021) 17:12 Page 16 of 20

with

P1(ρ, z) = 2k2z4 + ρ2
(
1 + k2ρ2 − ik

√
ρ2 + z2

)

+z2
(
−2 + 3k2ρ2 + i2k

√
ρ2 + z2

)
,

P2(ρ, z) = 3 − i3k
√

ρ2 + z2 − k2
(
ρ2 + z2

)
,

Q(ρ, z) = 4
(
ρ2 + z2

)− i4k
(
ρ2 + z2

)3/2

+ρ2
(
−6 + i6k

√
ρ2 + z2 + 2k2

(
ρ2 + z2

))
,

S(ρ, z) = 2k
(
ρ2 + z2

) (
i + k

√
ρ2 + z2

)
.

(81)

Appendix E: Free luneberg propagation of the
electromagnetic field
In this appendix, we will only illustrate the development of
one term of the matrices Me and Mm. Before, let us note
that the Luneberg transforms of the propagation matrices
Me and Mm is the matrix of the Luneberg transforms of
each term ofMe andMm

Lzl
[
Me(x, y, δ)

] =
⎡

⎢
⎢⎢
⎣

Lzl

[
−
(

∂2�e
∂y2

+ ∂2�e
∂z2

)]
Lzl

[
∂2�e
∂y∂x

]
Lzl

[
∂2�e
∂z∂x

]

Lzl

[
∂2�e
∂x∂y

]
−Lzl

[(
∂2�e
∂x2

+∂2�e
∂z2

)]
Lzl

[
∂2�e
∂z∂y

]

Lzl

[
∂2�e
∂x∂z

]
Lzl

[
∂2�e
∂y∂z

]
Lzl

[
−
(

∂2�e
∂x2

+∂2�e
∂y2

)]

⎤

⎥
⎥⎥
⎦

z=δ

,

(82)

and

Lzl
[
Mm(x, y, δ)

] =

iω ·

⎡

⎢⎢⎢
⎣

0 Lzl

[
− ∂�m

∂z

]
Lzl

[
∂�m
∂y

]

Lzl

[
∂�m
∂z

]
0 Lzl

[
− ∂�m

∂x

]

Lzl

[
− ∂�m

∂y

]
Lzl

[
∂�m
∂x

]
0

⎤

⎥⎥⎥
⎦

z=δ

(83)

To prove the results in Eqs. (36) and (37), resolve Eqs. (82)
and (83) is possible in Fourier space. Let us write the
Fourier transform of one the terms in Eq. (83)

F
[
Lzl

[
−iω ∂�m

∂z |z=δ]
]]

(u, v)=−iωF
[

∂�m
∂z

∣∣∣
z=δ

∗ ∗Lzl (x, y)
]
,

= −iω ∂
∂zF [�m]z=δ · F [Lzl (x, y)

]
,

= −iω ∂
∂z (i2π)

exp
(
i|z|

√
k2−4π2(u2+v2)

)

√
k2−4π2(u2+v2)

∣∣∣
z=δ

· sign(zl)

exp
(
i|zl|
√
k2 − 4π2(u2 + v2)

)
,

= −iω ∂
∂z (i2π)

exp
(
i(|z|+zl)

√
k2−4π2(u2+v2)

)

√
k2−4π2(u2+v2)

∣
∣∣
z=δ

,

(84)

with zl > 0. Next, we substitute Z = |z| + zl and ∂
∂z =

sign(z) ∂
∂Z in Eq. (84). We get then

F
[
Lzl

[
−iω

∂�m
∂z

∣∣∣
z=δ

]]
(u,v)

=−iωsign(δ)
∂

∂Z
(i2π)

exp
(
iZ
√
k2 − 4π2(u2+v2)

)

√
k2 − 4π2(u2 + v2)

∣∣
∣
Z=|δ|+zl

,

= −iω sign(δ)
∂

∂z
F [�m]z=|δ|+zl ,

= F
[
−iωsign(δ)

∂�m
∂z

∣∣
∣
z=|δ|+zl

]

(85)

Finally, we have

Lzl

[
−iω

∂�m
∂z

∣∣
∣
z=δ

]
= −iω sign(δ)

∂�m
∂z

∣∣
∣
z=|δ|+zl

(86)

The same process could be realized to all terms of (82) and
(83) and give the results in Eqs. (36), (37) and (38).

Appendix F: Integrals of the bessel product
We outline an approach for computing the integral
defined in Eq. (51),

Inm(β ,ω, s) =
∫ +∞

0
exp

(
iβ
√
1 − X2

)
Jn+1 (2πωX)

J|m| (2πωsX) dX. (87)

Firstly, the recurrence relation of the Bessel functions [3],
Eqs. (9.1.27) on p. 361,

Jn+1 (2πωX) = πωX
(n + 1)

(Jn (2πωX) + Jn+2 (2πωX)) , (88)

is necessary. In this case, the integral Inm becomes

Inm(β ,ω, s) = πω

(n + 1)

[
Ĩn,m(β ,ω, s) + Ĩn+2,m(β ,ω, s)

]
+

πω

(n + 1)

∫ +∞

1
exp

(
−β
√
X2 − 1

)
Jn+1 (2πωX) J|m| (2πωsX) dX.

(89)

with

Ĩn,m(β ,ω, s)=
∫ 1

0
exp

(
iβ
√
1−X2

)
Jn (2πωX) J|m| (2πωsX)XdX.

(90)

The evaluation of Ĩn,m where n andm are integers such that
n− |m| is even and non-negative, need some relations. The
first ones are the Zernike expansion of Bessel functions
(see [7], Eq. (54) in Appendix B)

Jn(2πωX)=
∞∑

k=0
2(n+2k+1)(−1)k Jn+2k+1(2πω)

2πω
Rn
n+2k(X), 0 ≤ X ≤ 1, (91)

and

J|m|(2πωsX)=
∞∑

t=0
2(|m|+2t+1)(−1)t J|m|+2t+1(2πωs)

2πωs
R|m|

|m|+2t(X), 0≤X ≤1.

(92)
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The coefficients of the expansion, in terms of Bessel func-
tions, are bounded and exhibit super-exponential decay
in t and k as soon as |m| + 2t ≥ 2πωs, n + 2k ≥ 2πω. Next, the
important second relation for the evaluation, is (see [32],
Eq. (82))

exp
[
iβ
√
1 − X2

]
=

∞∑

r=0
Br(β) · R02r(X), (93)

where the function Br(β), is given by

Br(β) = (2r + 1)
1
2

β

[
jr−1

(
1
2

β

)
h(1)
r

(
1
2

β

)

−jr
(
1
2

β

)
h(1)
r+1

(
1
2

β

)]
, β > 0,

(94)

with jr and h(1)
r the spherical Bessel and Hankel func-

tions, see [23], 10.4.7, of order r. The Br(β) are bounded,
which is obvious, and actually decay as β/(2r2) when r

exceeds 1
2 β, which is not obvious. The convergence of the

triple series is rapid, due to the rapid decrease of the two
jinc-functionss (in k and t, respectively) and the fact that
the remaining integrals in Eq. (96) are bounded and are
non-vanishing only when

r ≤ 1
2

(n + |m|) + k + t. (95)

This latter part follows from the part that Rnn+2k (X)R|m|
|m|+2t(X)

is a polynomials with even powers ≤ n+|m|+2k+2t of X while
∫ 1
0 X2jR02r(X)XdX = 0 when r > j. Hence, when r is large, then at
least one of k and t is large as well and so the corresponding
jinc-function is exponentially small.Thus we get

∫ 1

0
exp

(
iβ
√
1 − X2

)
Jn (2πωX) J|m| (2πωsX)XdX

=
∑

t,k,r
4(n + 2k + 1)(|m| + 2t + 1)(−1)k+t×

Br(β)
Jn+2k+1(2πω)

2πω

J|m|+2t+1(2πωs)
2πωs

∫ 1

0
R02r(X)Rnn+2k(X)R|m|

|m|+2t(X)XdX. (96)

We shall give below a method for systematically writing

R|m|
|m|+2t(X)Rnn+2k(X) =

1
2 (n+|m|)+k+t∑

q=0
LC|m|,n,0

tkq · R02q(X), (97)

where LC stands for linearization coefficient. As a conse-
quence and by the orthogonality of the radial polynomials,
the remaining integrals in Eq. (96) are equal to

∫ 1

0
R02r(X)Rnn+2k(X)R|m|

|m|+2t(X)XdX =
n+|m|

2 +k+t∑

q=0

LC|m|,n,0
tkq

2(2q + 1)
δrq,

(98)

where δrq is the the Kronecker delta, equal to 1 if r =
q, and 0 otherwise. The LC|m|,n,0

tkq are evaluated recur-
sively in Recursion step below, where we have writ-

ten n = |m| + 2L, L = 0, 1, · · · . The final expression is
thus

Ĩn,m(β ,ω, s) =
∑

t,k
Gn,|m|
tk (β ,ω)

J|m|+2t+1(2πωs)
2πωs

(99)

with k = 0, 1, · · · , t = 0, 1, · · · , and

GN ,M
tk (β ,ω)=4(−1)t+k(N + 2k + 1)(M + 2t + 1)

JN+2k+1(2πω)

2πω
N+M

2 +k+t∑

q=0

LCM,N ,0
tkq

2(2q + 1)
Bq(β)· (100)

Note that, the number of the summation over t, k, r, q has
been reduced to t, k, q due to the presence of the Kronecker
delta. The summation over q is a finite sum. This evalua-
tion in Eq. (99) stays valid for the second term of Eq. (89)
for n + 2.

Initialization ofLC|m|,n,0
tkq for L = 0

For L = 0, we have then the equality n = |m|. Since
LC|m|,|m|,0

ktq = LC|m|,|m|,0
tkq , we assume that k ≤ t. Now, (see [32]

Eq. (140) in Appendix C)

R|m|
|m|+2k(X)R|m|

|m|+2t =
|m|+t+k∑

q=0
A|m|,−|m|,0

|m|+2t,|m|+2k,2qR
0
2q(X), (101)

where A’s coefficients are linked to the C’s Clebsch-Gordan
coefficients according to

A|m|,−|m|,0
|m|+2t,|m|+2k,2q =

∣∣∣
∣C

1
2 |m|+t, 12 |m|+k,q
1
2 |m|,− 1

2 |m|,0

∣∣∣
∣

2

= (2q + 1)

∣∣∣
∣∣

(
1
2 |m| + t 1

2 |m| + k q
1
2 |m| − 1

2 |m| 0

)∣∣∣
∣∣

2
. (102)

The last term at the right hand side of Eq. (102) corre-
sponds to the 3j-symbol in the notation of [25], Chap. 34.
By the symmetry properties,

(
j1 j2 j3
m1 m2 m3

)

=
(

j3 j1 j2
m3 m1 m2

)

, (103)

we have from Eqs. (97) and (101)

LC|m|,|m|,0
tkq =A|m|,−|m|,0

|m|+2t,|m|+2k,2q

= (2q + 1)

∣∣∣∣∣

(
q 1

2 |m| + t 1
2 |m| + k

0 1
2 |m| − 1

2 |m|

)∣∣∣∣∣

2

. (104)

The computation of
(

j1 = q j2 = 1
2n

′ = 1
2 |m| + t j3 = 1

2h = 1
2 |m| + k

m1 = 0 m2 = 1
2 |m| m3 = − 1

2 |m|

)

, q = 0, 1, · · · ,
(105)

can be done recursively according to [32], Eqs. (63-68)
and (150-161), where we may restrict to the case that
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m′ = |m| ≤ h = |m| + 2k ≤ n′ = |m| + 2t since we have
assumed that k ≤ t. In this case, we have

(
1
2 |n′ − h| − 1 1

2n
′ 1

2h
0 1

2 |m| − 1
2 |m|

)

= 0, (106)

(
1
2 |n′ − h| 1

2n
′ 1

2h
0 1

2 |m| − 1
2 |m|

)

=(−1)
n′−|m|

2
(

(n′ − h)! h!
(n′ + 1)!

)1/2
·

⎛

⎝ (
n′+|m|

2 )! ( n
′−|m|
2 )!

(
h+|m|

2 )! ( h−|m|
2 )!

⎞

⎠

1/2
1

( n
′−h
2 )!

,

(107)

and

|m|(2q + 1)
(
q 1

2n
′ 1

2h
0 1

2 |m| − 1
2 |m|

)

=
(

q2 −
(
n′ − h

2

)2)1/2
·

((
n′ + h

2
+ 1
)2

− q2
)1/2 (

q − 1 1
2n

′ 1
2h

0 1
2 |m| − 1

2 |m|

)

+
(

(q + 1)2 −
(
n′ − h

2

)2)1/2 ((n′ + h
2

+ 1
)2

− (q + 1)2
)1/2

·
(
q + 1 1

2n
′ 1

2h
0 1

2 |m| − 1
2 |m|

)

(108)

for q = 1
2 |n′ − h|, 12 |n′ − h| + 1, · · · , 12 (n′ + h) − 1. The quantity

(−1)
n′−|m|

2
(

(n′ − h)! h!
(n′ + 1)!

)1/2
·
⎛

⎝ (
n′+|m|

2 )! ( n
′−|m|
2 )!

(
h+|m|

2 )! ( h−|m|
2 )!

⎞

⎠

1/2
1

( n
′−h
2 )!

,

(109)

is easily computed recursively by noting its simple form
for h = n′ and the simple form of the ration of two consec-
utive quantities (109) as a function of h = n′, n′ − 2, · · · ,m′.
This recursive computation of (109) is as follow. Let n′
and m′ be non-negative integers with n′ − m′ even and
non-negative. Consider

Th = (n′ − h)! h!
(n′ + 1)!

( n
′+m′
2 )! ( n

′−m′
2 )!

( h+m′
2 )! ( h−m′

2 )!

(
1

( n
′−h
2 )!

)2
, (110)

for h = m′,m′ + 2, · · · , n′. Then

Tn′ = 1
n′ + 1

, (111)

and, for h = m′ + 2,m′ + 4, · · · , n′,

Th−2 = (n′−h+2)!(h−2)!
(n′+1)!

( n
′+m′
2 )!( n

′−m′
2 )!

( h+m′
2 −1)!( h−m′

2 −1)!
(

1
( n

′−h
2 +1)!

)2
(112)

= Th · n′−h+1
n′−h+2 · (h+m′)(h−m′)

h(h−1) , (113)

The square root of the result of the recurrence allow to
obtain the result of Eq. (109).

Expressing R|m|+2L+2
|m|+2L+2+2B as a linear combination of

R|m|+2L
|m|+2L+2A, A = 0, 1, · · · , B + 1.

Let L = 0, 1, · · · , B = 0, 1, · · · . There is an explicit series
representation

R|m|+2L+2
|m|+2L+2+2B(X) =

B+1∑

A=0
CC|m|+2L+2,|m|+2L

BA R|m|+2L
|m|+2L+2A(X),

(114)

where CC stands for connection coefficient. This follows
from [32], Eq. (200) withm′ = |m|+2L+2, h = |m|+2L+2B+2;
so that p = 1

2 (h−m′) = B, q = 1
2 (h+m′) = |m| + 2L+ B+ 2 that

thus takes the form

R|m|+2L+2
|m|+2L+2+2B(X) = B + 1

|m| + 2L + B + 2
R|m|+2L

|m|+2L+2B+2(X)

+ |m| + 2L + 1
(|m| + 2L + B + 2)(B + 1)

B+1∑

D=1

(|m|+2L+2(B + 1−D)+1)
(B+1

D
)

(|m|+2L+B+1
D

) ·

(−1)D+1R|m|+2L
|m|+2L+2(B+1−D)

(X). (115)

The ratio of the two binomials occurring in the series
over D can be conveniently computed recursively in D =
0, 1, · · · ,B + 1:

(B+1
D
)

(E+1
D
) =1, D = 0;

(B+1
D+1

)

(E+1
D+1

) =
(B+1

D
)

(E+1
D
) · B+1−D

E+1−D
, D=0, 1, · · · ,B.

(116)

Thus, letting Q = |m| + 2L + B + 2, we have

CC|m|+2L+2,|m|+2L
B,A=B+1 = B + 1

Q
, (117)

and, writing A = B + 1 − D = 0, 1, · · · ,B in the series (115)

CC|m|+2L+2,|m|+2L
BA

= (|m|+2L+1)(|m|+2L+2A+1)
Q(B+1)

(−1)B−A
(B+1

A
)

( Q−1
B+1−A

) , A=0, 1, · · · ,B.

(118)

Recursion step
Let L = 0, 1, · · · and assume that we have for a given t =
0, 1, · · · available all quantities

LC|m|,|m|+2L,0
tkq , t = 0, 1, · · · , q = 0, 1, · · · , |m| + L + t + k.

(119)

Then

R|m|
|m|+2t(X)R|m|+2L+2

|m|+2L+2+2k(X)

=
k+1∑

A=0
CC|m|+2L+2,|m|+2L

kA R|m|
|m|+2t(X)R|m|+2L

|m|+2L+2A(X),

=
k+1∑

A=0
CC|m|+2L+2,|m|+2L

kA

|m|+L+t+A∑

q=0
LC|m|,|m|+2L,0

tAq R0
2q(X).

(120)
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We rearrange the repeated series, writing E = |m| + L + t
according to

k+1∑

A=0
CC|m|+2L+2,|m|+2L

kA ·
E+A∑

q=0
LC|m|,|m|+2L,0

tAq R0
2q(X) (121)

=
k+1∑

A=0

E+A∑

q=0
CC|m|+2L+2,|m|+2L

kA · L|m|,|m|+2L,0
tAq R0

2q(X) (122)

=
E+k+1∑

q=0

⎡

⎣
k+1∑

A=max(0,q−E)

CC|m|+2L+2,|m|+2L
kA LC|m|,|m|+2L,0

tAq

⎤

⎦R0
2q(X). (123)

Hence

LC|m|,|m|+2L+2,0
tkq =

k+1∑

A=max(0,q−E)

CC|m|+2L+2,|m|+2L
kA · LC|m|,|m|+2L,0

tAq .(124)

for k = 0, 1, · · · and q = 0, 1, · · · , |m|+t+k+L+1 where E = |m|+
L+ t. Note that for L = 0, LC|m|,|m|,0

tAq is defined by Eq. (104) to
initialize the recursion.

Evaluation of the integralJnmk(β,ω, s) in Eq. (57)
To evaluate this integral, it is not necessary to use the
recurrence relation of the Bessel functions. This integral
is identical to the integral in Eq. (90) except for the expo-
nential function. In this case, there is the R0

2r-expansion,
see [31], Eq. (35),

exp
[
iβ

√
1 − X2

]

√
1 − X2

=
∞∑

r=0
Ar(β) · R0

2r(X), (125)

with

Ar(β) = iβ(2r + 1)jr
(
1
2
β

)
h(1)
r

(
1
2
β

)
, β > 0. (126)

We replace Bq(β) by Aq(β) in the final result Eq. (100).
Thus,

Jnmk(β ,ω, s) =
∑

t,l
Hn+1,|1+m−2k|

tl (β ,ω)
J|1+m−2k|+2t+1(2πωs)

2πωs

(127)

with l = 0, 1, · · · , t = 0, 1, · · · , k = 0, 1 and

HN ,M
tl (β ,ω) = 4(−1)t+l(N + 2l + 1)(M + 2t + 1)

JN+2l+1(2πω)

2πω
N+M

2 +l+t∑

q=0

LCM,N ,0
tlq

2(2q + 1)
Aq(β) (128)

with Aq(β) defined in Eq. (126).

Cases of evanescante waves
Now, we must treat the integral correspond to the evanes-
cent wave. From Eq (89), we note

∫ +∞

1
exp

(
−β
√
X2 − 1

)
Jn+1 (2πωX) J|m| (2πωsX) dX = I, (129)

which becomes with Y = (X2 − 1)1/2, dX = Y (1 + Y 2)−1/2dY ,

I =
∫ +∞

0
exp(−βY )Jn+1

(
2πω

√
1 + Y 2

)
J|m|

(
2πωs

√
1 + Y 2

)

(
1 + Y 2)−1/2 YdY . (130)

As β is large, greater than 30, exp(−βY ) becomes zero
everywhere except close to the point Y = 0. Thus, with
an slowly variable envelop approximation, and by applying
the steepest descent method, we have

I ≈ Jn+1(2πω)J|m|(2πωs)
∫ +∞

0
exp(−βY )YdY

= 1
β2 Jn+1(2πω)J|m|(2πωs) (131)

This approximation can be used to evaluate the integral
over X ∈[ 1,+∞) in Eq. (57). Alternatively, the integrals in
Eq. (129) and Eq. (130) can be done by numerical integra-
tion in a much easier way than, for instance, the integral
Ĩn,m in Eq. (90).
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