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Abstract

In far-field light shaping, one of the design methods is based on a one-to-one map between the irradiance of the
source and target. However, an integrability issue may occur in this kind of algorithms, either in the ray mapping
method for designing a freeform surface or in those geometric-optics-based methods for achieving a required output
phase. We introduce another mapping-type algorithm to tackle the integrability problem, which instead of
establishing a mapping between both the source and target irradiance in the space domain, the mapping is assumed
on electric fields of a Fourier pair between the space domain and the spatial-frequency domain. By solving the
mapping from the Fourier pair, the gradient of the output phase is achieved, that the gradient is equivalent to the
obtained mapping function. Moreover, the existence and the characterization of the mapping guarantees the
integrability of the gradient so that a smooth output phase can be directly integrated. Based on the obtained smooth
output phase, a freeform surface can then be designed for the light-shaping task. Numerical examples are
demonstrated for the comparison of the approaches with different mapping assumptions.
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Introduction
The design of an optical element for spatial energy redis-
tribution is a fundamental problem of light shaping. In
order to redistribute the irradiance, one straightforward
thinking is to find a mapping between the irradiance dis-
tribution of the source and the target. Therefore, the local
energy conservation is usually assumed in the design algo-
rithms, either for the design of diffractive optics [1–6] or
refractive optics [7–13].
The optimal mass transport (OMT) model [14–16] is

widely used for solving a 2D mapping from the irradiance
relation, which is usually formulated as a Monge–Ampère
equation. Based on the obtainedmapping, different strate-
gies are taken for searching a proper optics to realize the
mapping.
One strategy is to directly design the structure of the

optical element, which is usually found in those algo-
rithms for the freeform surface design. By using Snell’s
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law, the gradient of the surface is derived from the map-
ping and used to construct the freeform surface. This
method is often referred to as the “ray mapping method”
[8–10, 12, 13]. However, if the mapping is solved from the
irradiance relation itself which is decoupled from the sur-
face information, the obtained surface gradient, in general,
does not satisfy the integrability condition [11, 17, 18].
Bruneton et al. [17] and Bösel et al. [18] have given math-
ematical proof that only in paraxial situations, the ray
mapping method can provide an integrable gradient for
the freeform surface. Therefore, enforcing a direct inte-
gration procedure with the gradient data usually causes
errors in the designed surface, which may result in a
deformed irradiance distribution from the target one. Fur-
ther optimization processes should be used to improve the
performance of the design [8, 10].
An alternative strategy first tries to determine a suit-

able output phase by using the obtained mapping, where
the output phase dominates the light propagation in free
space and realizes the mapping. Next, the optical ele-
ment is then designed based on the obtained output
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phase. This strategy can usually be seen in the design
of a computer-generated hologram (CGH), where the
element function of the CGH is simply calculated by
the subtraction between the output and input phase
[3–5]. Besides, the thin element approximation (TEA)
method [19] and inverse local plane interface approxima-
tion (LPIA) method [20, 21] also used to design a freeform
surface with the retrieved output phase.
The derivation of the output phase from the mapping

is under the stationary phase approximation [22], that the
gradient of the output phase is connected with the map-
ping. For example, Feng et al. [19, 23] coupled the phase
gradient and the mapping in a complex non-linear partial
differential equation to solve the required output phase.
However, again, if the mapping is concluded only from the
irradiance relation without considering the output phase
information, like in [3, 5, 6], the gradient data of the
phase derived from the mapping is not necessarily inte-
grable. Similar to the ray mapping method for designing
the freeform surface, the integrability issue also happens
here for the output phase retrieval. A mathematical proof
is provided in this article that the obtained gradient data
of the phase is integrable only in paraxial cases.
In order to obtain a proper output phase without

solving a complex differential equation, a mapping-type
Fourier pair synthesis method is introduced in the pre-
vious work of the authors [24], where instead of finding
a mapping between the irradiance in the space domain,

the mapping is found between the electric fields in the
space domain and its corresponding one in the spatial-
frequency domain.
In this work, we attempt to prove that the mapping

between the Fourier pair gives an integrable solution for
the required output phase, which can further be applied
for the design of a CGH or a freeform surface. We present
and analyze both mapping assumptions from a physical-
optics point of view. The integrability condition in both
algorithms is discussed mathematically. Numerical exam-
ples are shown for the demonstration and comparison of
both approaches.

Problem analysis
Field tracing for the far-field light-shaping system
We analyze the far-field light-shaping system by physical
optics, and illustrate the notation for the later discus-
sion. The considered light-shaping system is shown in
Fig. 1(a). The optical element is to shape the input field
from the source to its far-field zone in order to achieve a
desired irradiance distribution. The field tracing diagram
in Fig. 1(b) illustrates themodeling algorithm for the light-
shaping system (Fig. 1(a)). In the field tracing diagram, the
electric fields, E = (Ex,Ey,Ez), are indicated through the
light path, either in the spatial domain (ρ domain) or in
the spatial-frequency domain (κ domain), with ρ = (x, y)
is the transversal coordinate on a certain plane and κ =
(kx, ky) the x- and y-component of the wave vector. B is

Fig. 1 A light-shaping system with a field tracing diagram illustrating the modeling techniques
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Fig. 2 (a) An off-axis light-shaping task, shaping a plane wave into a uniform off-axis rectangle pattern. (b)(c) The calculated output phase gradient
data, with x- and y-component respectively (Unit: 106rad/m). (d) The calculated output phase by direct numerical integration method with the
gradient data (Unit: 103rad). (e) Irradiance (normalized): simulation result by field tracing, with the designed phase response function used

an operator that indicates the functionality of the optical
element, acts on the field in the ρ domain. The free space
propagation step behind the optical element contains two
Fourier transformF andF−1 and a propagation operator
P̃ in the κ domain. Therefore, the field tracing diagram
builds up an algorithm that demonstrates how the target
field is calculated from the input,

Etar(ρ′) = F−1
{
P̃F

{
Eout(ρ)

}}

= F−1
{
P̃F

{
BEin(ρ)

}}
,

(1)

where Ein, Eout and Etar are the electric fields defined on
the input plane in front of the optical element, the output
plane behind the optical element and the target plane on
which the signal for the task is given.
Here, we first assume the functionality of the optical ele-

ment B as a phase-only response function to achieve the
required output phase. The extra physical effect from the
structure of the optical element will then be considered
and compensated in the structure design step. Therefore,
for the output phase retrieval step, it is assumed that,

∣∣Eout� (ρ)
∣∣ = ∣∣Ein� (ρ)

∣∣ , (2)

where E� represents any component of the field E, with
� = x, y, z.

∣∣Ein� (ρ)
∣∣ and ∣∣Eout� (ρ)

∣∣ are the amplitudes of the
input and output fields, respectively.
It is noted in [25], that if all the operators in Eq. (1)

are pointwise operators, the field tracing algorithm estab-
lishes a one-to-one map or so-called homeomorphism
between the input field Ein(ρ) and the target one Etar(ρ′).
This is indeed the typical mapping assumption included
in all the geometric-optics-based design algorithms.
In fact, due to the homeomorphism is through the

whole system, the mapping can be assumed between
any two fields in the field tracing diagram (Fig. 1(b)).
In the mapping-type Fourier pair synthesis method,
the mapping between Eout(ρ) and Eout(κ) is chosen,
which is not the same as typical mapping assumption in
the literature.
In the following, we compared the phase retrieval meth-

ods with these two different mapping assumptions, that
one is on ρ′(ρ) and the other one is on κ(ρ). And the
integrability issue of each method is mathematically dis-
cussed.
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Fig. 3 The squared norm of the amplitude for the Fourier pair: (a)
∥∥Eout(ρ)

∥∥2 in ρ domain , and (b)
∥∥Eout(κ)

∥∥2 in κ domain. (c)(d) The solved
one-to-one map between the squared norms of the amplitude in both domains, with the mesh (c) for (a) and its mapped one (d) for (b)

Output phase retrieved from the mapping in the spatial
domain
For the output phase retrieval based on the mapping
ρ′(ρ), the algorithm is presented as followed.
Considering a lossless system, the flux is conserved at

different positions though the system. Therefore,
∫∫

Eein(ρ) dρ =
∫∫

Eeout(ρ) dρ =
∫∫

Eetar(ρ′) dρ′,

(3)

where Eein(ρ), Eeout(ρ) are the input and output irra-
diance distribution. Here, since the optical element is
considered in its functional embodiment as a phase-
only response function, Eein(ρ) and Eeout(ρ) is defined
on the same reference plane of the optical element and
Eeout(ρ) = Eein(ρ), where Eein(ρ) is obtained by propa-
gating the source field to the reference plane. Eetar(ρ′) is
the irradiance distribution on the target plane.
Typically in the literature, the homeomorphism is

assumed between Eeout(ρ) and Eetar(ρ′). Therefore, Eq. (3)
is derived into its differential form which is also named as
the local energy conservation law [11],

det[ J(ρ′(ρ))]= Eeout(ρ)

Eetar(ρ′(ρ))
, (4)

where det[ J(ρ′(ρ))] is the determinant of the Jacobian
matrix J(ρ′(ρ)).
In general, solving the 2D mapping ρ′(ρ) from Eq. (4)

is specified by a mathematical model, the L2 Monge-
Kantorovich problem, or the so-called “Optimal Mass
Transport” (OMT) problem. Several numerical algo-
rithms had been proposed to solve the OMT problem
[15, 16].
After the mapping ρ′(ρ) is solved, by the method of sta-

tionary phase according to Bryngdahl [22], the gradient
of the output phase is connected with the mapping in the
space domain, where their relation is written as:

∇ψout(ρ) = k0n
ρ′(ρ) − ρ√

‖ρ′(ρ) − ρ‖2 + L2
. (5)

Here, k0 is the wave number, n is the refractive index in
the free space and L is the propagation distance between
the optical element and the target plane.
The existence and the curl-free characterization of

the solution for the L2 Monge-Kantorovich problem is
addressed in the theorem by Brenier [26]. Therefore, a
curl-free mapping function ρ′(ρ) can be solved from
Eq. (4). However, due to the nonlinear relation in Eq. (5),
∇ψout(ρ) is not necessary a conservative vector field,
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Fig. 4 The gradient data of the output phase calculated with the mapping type Fourier pair synthesis method, with (a) the x component of the
gradient and (b) the y component of it (Unit: 106rad/m). (c) The output phase integrated directly from its gradient data (Unit: 103rad). (d) The
simulated irradiance (normalized) by using the designed phase response function

even though ρ′(ρ) is. The integrability of ∇ψout(ρ)

only can be preserved in the paraxial approximation
that

∥∥ρ′(ρ) − ρ
∥∥ � L. In general, with the gradient

data obtained from the mapping in spatial domain, the
required output phase ψout(ρ) cannot be reconstructed
by direct integration.

Output phase retrieved from the mapping in the Fourier
pair
For the algorithm of the mapping-type Fourier pair syn-
thesis [24], the homeomorphism is assumed between the
field of Eout(ρ) and Eout(κ), which are connected in the
Parsevel’s equation.∫∫ ∥∥Eout(ρ)

∥∥2 dρ =
∫∫ ∥∥Eout(κ)

∥∥2 dκ . (6)

If we assume κ(ρ) is a one-to-one map, Eq. (6) can also be
derived to a differential equation.

det[ J(κ(ρ))]=
∥∥Eout(ρ)

∥∥2
∥∥Eout(κ(ρ))

∥∥2 , (7)

where det[ J(κ(ρ))] is the determinant of the Jacobian
matrix J(κ(ρ)).

∥∥Eout(ρ)
∥∥ is concluded by using Eq. (2). Eout(κ(ρ)) can

be calculated by an inverse procedure of the field trac-
ing from Etar(ρ′), where Etar(ρ′) is usually derived from
the given target irradiance Eetar(ρ′), with the far-field
assumption.
We denote the target field explicitly as,

Etar(ρ′) =
⎡
⎣
Etarx (ρ′)
Etary (ρ′)
Etarz (ρ′)

⎤
⎦ exp[ iψ tar(ρ′)] . (8)

Since the target plane is at the far-field zone, the phase of
the target field is an approximated spherical phase which
is common for all its three components per definition.

ψ tar(ρ′) = k0n
√

|ρ′|2 + L2, (9)

where L is the propagating distance from the output plane
to the target one.
The amplitude of the target field can be determined by

using the given irradiance distribution. Under the far-field
assumption, the relation of the irradiance and the electric
field is formulated as followed:



Yang et al. Journal of the European Optical Society-Rapid Publications           (2021) 17:15 Page 6 of 10

Fig. 5 (a) The designed freeform lens. (b) the height profile of the freeform surface (Unit: mm). (c) the simulated irradiance (normalized) with the
freeform lens

Etare (ρ′) = n
2μ0c

�̂s(ρ′)N̂(ρ′)
∥∥Etar(ρ′)

∥∥2 , (10)

where n is the refractive index, μ0 the vacuum perme-
ability, and c the speed of light in vacuum. �̂s is the unit
vector of the Poynting vector, which can be calculated by
�̂s = (x′/r, y′/r, L/r), with (x′, y′) is the coordinate on the
target plane, and r = √

x′2 + y′2 + L2. N̂ is the normal vec-
tor of the target plane. N̂ = (0, 0, 1) if the target plane is
perpendicular to the optical axis. ‖E‖ denotes the L2 norm
of the field, with

‖E‖2 = E2x + E2y + E2z

= E2x + E2y +
( sxEx + syEy

sz

)2
.

(11)

Therefore, by selecting a polarization state, the target field
can be calculated from the given target irradiance.
Eout(κ) is then concluded from Etar(ρ′) via an inverse

field tracing, that

Eout(κ) = P̃−1F
{
Etar(ρ′)

}

= exp[−ikz(κ)L]F
{
Etar(ρ′)

}
,

(12)

with kz(κ) the z-component of the spatial frequency vec-
tor.
After Eout(ρ) and Eout(κ) are prepared, by using the

same mathematical model, the L2 Monge-Kantorovich
problem, the curl-free mapping κ(ρ) can also be solved
from Eq. (7).
The stationary phase method is also used to calculate

the gradient of the output phase behind the element,

∇ψout(ρ) = κ(ρ). (13)

However, since this time the right side of Eq. (13) is a
conservative vector field, ∇ψout(ρ) is integrable in any
case. Therefore, once κ(ρ) is obtained, ψout(ρ) can be

calculated by direct integration, regardless of paraxial or
non-paraxial, on-axis or off-axis situations.
So far, we present both the schemes with different

homeomorphic assumptions in order to reconstruct a
required smooth output phase. The mathematical deriva-
tion shows that the gradient information of the output
phase calculated with the mapping from the irradiance
in the spatial domain cannot satisfy the integrability con-
dition. Instead of introducing extra constraints to the
method in the spatial domain, the proposedmapping-type
Fourier pair synthesis directly results in integrable data for
the output phase reconstruction.

Numerical examples of the output phase retrieval
A simple off-axis example with a high divergence angle,
where the classic approach that assumes the mapping of
the irradiance in spatial domain fails, is demonstrated for
the comparison of both approaches, as shown in Fig. 2.
We first show the design by the method with the map-
ping ρ′(ρ), and illustrate how the non-integrable solution
influences the result. We then show the algorithm with
mapping κ(ρ) that tackles the problem with an integrable
solution.
In the example, the input is a plane wave propagating

along the optical axis, with a square aperture of 1 × 1 mm
size. The required optical element is to shape the plane
wave into a rectangle homogeneous pattern with a size of
1.5 × 0.7 m, located on a vertical plane with 1 m away
from the shaper, and the target pattern is with 0.5 m offset
distance in the y-direction.
Both the irradiance of the input and target are constant

values, therefore it is straightforward to conclude that the
mapping of the irradiance is between two regular uniform
grids, with the shape of a square and a rectangle respec-
tively. We sampled both grids with 401 × 201 points in x-
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and y-dimension, and by using Eq. (5), the output phase
gradient data is calculated, as shown in Fig. 2 (b) and (c).
The integrability of the resulting gradient data is deter-

mined by ψout
xy = ψout

yx [27, p. 458], where ψxy := ∂2ψ
∂x∂y .

Therefore, we use the relative root-mean-squared devi-
ation (RMSD) between ψout

xy and ψout
yx to determine the

integrability of the data, which is evaluated by,

δ =
√√√√

∑
i
∑

j[ψout
xy (ρij) − ψout

yx (ρij)]2∑
i
∑

j[ψout
xy (ρij)]2

· 100%. (14)

The data from Fig. 2 (b) and (c) gives δ = 40%.
In order to reconstruct the output phase function based

on the data in Fig. 2 (b) and (c), the B-spline technique
[28] is applied here for the numerical integration. It is
done by introducing B-spline functions with unknown
control points to represent the phase function. The con-
trol points of the B-spline function is then determined by
finding the best fit between the derivative formulas of the
B-spline functions and the phase gradient data. By doing
so, an optimal approximate smooth phase is obtained and
represented by B-spline functions, as shown in Fig. 2 (d).
For testing if the resulting output phase is the required

one for the light shaping, we consider the element func-
tion as a phase response function �ψ(ρ), which is simply
calculated by �ψ(ρ) = ψout(ρ) − ψ in(ρ). ψ in(ρ) is the

phase of the input field which is a constant function in
this case. A functional component that stores the phase
response function of�ψ(ρ) is defined in the software Vir-
tualLab Fusion [29], therefore the obtained output phase
from the design can be recalled in the simulation. Sim-
ulation is performed with the techniques shown in the
field tracing diagram in Fig. 1. A detector set on the target
plane gives the irradiance distribution shown in Fig. 2 (e).
The shape and the inner irradiance distribution indicate
that it deviates quite strongly from the targeted uniform
rectangle pattern. Therefore, the approach starts with
the mapping of irradiance in the spatial domain cannot
provide an accurate output phase.
For the other algorithm that the mapping is estab-

lished between the Fourier pair, the amplitude of the
fields Eout(ρ) and Eout(κ), in both domains, is first pre-
pared from the given source and target irradiance of the
task. Fig. 3 (a) and (b) shows both the obtained ampli-
tude of the Fourier pair. We implement the algorithm
proposed by Prins [16] to calculate the mapping κ(ρ)

in Eq. (7). Their homeomorphism ρ ↔ κ is illustrated
by two meshes shown in Fig. 3 (c) and (d). The same
number of sampling points 401 × 201 as in the previous
approach is used for the design, however, for better visu-
alization, we just show 41 × 21 mesh nodes in Fig. 3 (c)
and (d).

Fig. 6 (a) An non-paraxial light-shaping task, shaping a spherical wave with circular aperture into a uniform rectangle pattern. (b)(c) The calculated
output phase gradient data, with x- and y-component respectively (Unit: 106rad/m and 105rad/m respectively). (d) The calculated output phase by
direct numerical integration method with the gradient data (Unit: 104rad)
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Since the output phase gradient is equivalent to the
mapping κ(ρ) according to Eq. (13), it is obtained by
applying interpolation technique on the data of κ(ρ).
Fig. 4 (a) and (b) show the gradient ofψout(ρ). The relative
RMSD between ψout

xy and ψout
yx is δ = 0.4%, which is quite

smaller than the one from the previous method. The small
value indicates the obtained gradient data is integrable.
By direct integration,ψout(ρ) is shown in Fig. 4 (c). Sim-

ilarly, we calculate the phase response function �ψ(ρ)

for further investigation. Simulation with the resulting
�ψ(ρ) gives the pattern on the irradiance detector as
shown in Fig. 4 (d). Here, the detected irradiance clearly
indicates that a uniform rectangle pattern which proves
the required output phase is obtained accurately.

Demonstration of structure design
The smooth output phase reconstructed by the mapping-
type Fourier pair synthesis is also a promising result that
can be used for the further structure design of the optical
elements, e.g. CGH or freeform surface. Here, we show a
demonstration of a freeform lens that is designed based
on the obtained output phase.
The freeform lens is set with a predefined planar surface

as its front surface and the back one is a freeform surface
to be designed. The design of the freeform surface starts
with an initial surface. Both the input and output fields
are decomposed into local plane waves, with their wave
vectors concluded from the input phase and the obtained
output phase by the stationary phase function. Both the
input and output local plane waves are propagated onto
the initial surface and the normal of the surface is cor-
rected by using Snell’s law. The freeform surface then can
be concluded from the obtained normals. However, the

construction of the freeform lens will introduce ampli-
tude modulation to the input field and Eq. (2) is no longer
true. The required output phaseψout(ρ) has to be updated
for the modulated amplitude behind the freeform lens so
that Eout(ρ) and Eout(κ) satisfy the Fourier relation. The
mapping-type Fourier pair synthesis illustrated in “Out-
put phase retrieved from the mapping in the Fourier pair”
section can again be applied for the output phase retrieval.
However, the amplitude of Eout(ρ) should be recalculated
with the current freeform lens. The whole algorithm is
an iterative approach alternatively performing the output
phase retrieval and the freeform surface construction until
both the amplitude and the phase of Eout(ρ) meets the
Fourier relation with Eout(κ). Since the detailed design
algorithm of the freeform lens is not the focus of this
article, we just show the results for demonstration. The
structure of the freeform lens is shown in Fig. (5) (a)
in 3D view and the height profile of the freeform sur-
face is shown in Fig. (5) (b). With the freeform lens, the
simulation result in Fig. (5) (c) displays the irradiance
distribution detected on the target plane.
The above numerical example is a simple one for illus-

trating the integrability issue in the output phase retrieval
with the mapping from the irradiance relation, and in con-
trast, the phase gradient obtained from the Fourier pair
relation does not have an integrability problem. In fact,
the latter approach for light shaping is general with no
restriction from the phase and shapes of the input field.
Another example in the following demonstrates a light
shaping problem for a circular shape spherical wave input.
As shown in Fig. 6 (a), the task is to shape a spheri-

cal wave to a rectangle pattern in the far-field zone. The
full divergence angle of the spherical wave is 30◦, with a

Fig. 7 (a) The designed freeform lens. (b) the height profile of the freeform surface (Unit: mm). (c) the simulated irradiance (normalized) with the
freeform lens
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wavelength of 532nm and a circular aperture. The target
pattern is located on a vertical plane with 1 m away from
the optical element, with a size of 1.2 × 0.8 m. By the
mapping-type Fourier synthesis method, the calculated
gradient of the output phase is shown in Fig. 6 (b) and (c).
The relative RMSD between the obtained ψout

xy and ψout
yx

reaches δ = 0.4%, which indicates the gradient data of
the output phase for this example is again integrable. The
integrated smooth output phase is shown in Fig. 6 (d).
With the obtained output phase, a freeform lens is again

designed for light shaping. We also show the 3D view
of the designed freeform lens in Fig. 7 (a). The freeform
surface of the lens is shown in Fig. 7 (b). A field tracing
simulation is performed with the spherical wave and the
designed freeform lens. The irradiance distribution illus-
trated in Fig. 7 (c) indicates that the lens designed based
on the output phase solves the shaping problem in a good
way.

Conclusion
Homeomorphism through the light path in light-shaping
system can be assumed between different fields if all
the operators can be considered pointwise. The field
tracing diagram provides a comprehensive view for the
design algorithms with different mapping assumptions.
The retrieval of the required output phase for the design
can be proceeded by using the mapping solved between
different field pairs. By the mapping-type Fourier pair
synthesis, due to the special relation between the out-
put phase gradient and the mapping of the Fourier pair,
the integrable gradient data is obtained, which guaran-
tees the output phase can be accurately reconstructed by
a direct integration procedure. A smooth freeform sur-
face can be then designed for the shaping based on the
retrieved output phase.

Abbreviations
OMT: Optimal mass transport; CGH: Computer generated hologram; TEA: Thin
element approximation; LPIA: Local plane interface approximation; RMSD:
Root-mean-squared deviation
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