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Abstract

performance.

In this paper, we optimized the apodization profile to improve the dispersion compensation performance of the
chirped fiber Bragg gratings (CFBGs). Half tanh half uniform (HTHU), half exponential half uniform (HEHU), and half
hamming half uniform (HHHU) apodization profiles were evaluated at 2000 nm wavelength. At this wavelength,
Hollow-Core Photonic Crystal Fiber (HC-PCF) will be the targeted fiber for the future implementation. In this work,
our aim is to obtain the dispersion compensator design with minimum average group delay ripple (GDR) and
maximum Full Width Half Maximum (FWHM) bandwidth. The result shows that the best FWHM bandwidth is
obtained by using HTHU profile that is approximately 96.27 %. In term of GDR, all apodization profiles show similar
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Background

Exploring 2000 nm transmission window in optical com-
munication system is one of important solutions to in-
crease the bandwidth. To explore this transmission
window, several measures need to be taken in optimiz-
ing dispersion compensation for this window. Hollow-
Core Photonic Crystal Fiber (HC-PCF) was introduced
as the transmission fiber, which is dominated by wave-
guide dispersion [1]. The Group Velocity Dispersion
(GVD) of HC-PCF can be compensated at a given wave-
length by scaling the fiber dimensions. However, this
method is costly and complex. The dispersion slope of
HC-PCFs is very steep. Consequently the range of zero
dispersion wavelengths is very small. This means that
without Chromatic Dispersion Compensator (CDC), HC-
PCF can only support a small number of Dense Wave-
length Division Multiplexing (DWDM) channels. One of
the methods to compensate HC-PCF’s GVD is to use apo-
dized Chirped Fiber Bragg Gratings (CFBG) [2]. Several
researches focused on optimizing the apodization profile
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to improve the performance of CDC at 1.55 um wave-
length [3-5]. Selection of the best parameters for the
CFBG such as grating length, chirp period and index vari-
ation is very important. Apodization is a crucial procedure
to reduce the group delay ripple that influences by chirped
FBG dispersion characteristics [2, 6, 7]. The worst effect of
apodization is losses in the bandwidth, which is very
crucial.

In this paper, a simulation by using Matlab is con-
ducted to evaluate three apodization profiles namely
Half Tanh Half Uniform (HTHU), Half Exponential Half
Uniform (HEHU), and Half Hamming Half Uniform
(HHHU) profiles. The average group delay ripple and
the bandwidth’s variation are monitored to determine
the optimum CDC performance at 2000 nm wavelength.

Methods

In order to design a CEBG with specified reflectivity and
bandwidth, we use an objective reflectivity response as a
reference for the designing process. We set 100 % reflect-
ivity, and 0.8 nm Full Width Half Maximum (FWHM)
bandwidth as the target as shown in Eq. 1:
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The optimum value of refractive index modulation
amplitude, An, CFBG length, Ly, and the chirp param-
eter, C, is obtained by using the error estimation equa-
tion (Eq. 2) where error, E is defined as

E= Z(RObj@i)—Rsl-m(Ai))z =0,i=1,2,..,N (2)

15

where A; is the discrete set of wavelengths, and Ry;,, is
the simulated reflectivity.

Referring to Eq. (2), our simulation shows that the pa-
rameters that give the minimum E are Ly = 108 mm,
An=9¢ °and C= -0.23¢ " nm/cm.

Figure 1 shows the simulated reflectivity response
(blue) of a non-apodized CFBG, and the corresponding
group delay (red). It is shown that the reflectivity nearly
reaches 100 % and the 3-dB bandwidth is about 0.8 nm.
The slope of the group delay indicates the amount of
chromatic dispersion that can be compensated by our
CDC that is about -1500 ps/mm. The value of group
delay ripple (GDR) is too large, which is around + 30 ps.
Therefore, there is an urgent need to reduce GDR while
maintaining the bandwidth as optimum as possible.

Results and discussion
To suppress the GDR, several apodization profiles have
been tested [8]. In this paper, we optimize the following
apodization profiles in which we consider the bandwidth
to be the effective element as GDR.

Half Tanh- half uniform profile (HTHU):
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Fig. 1 The simulated reflectivity (blue), the group delay (red)
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Sharpness parameter a is used to control the sharpness
of the apodization profile.

Reflectivity and group delay vary with the refractive
index change, 67zeﬁr (z). Eq. 3, Eq. 4 and Eq. 5, show that
the sharpness parameter a is the variable that deter-
mines the value of 8. (z). Therefore, it can also be
used to optimize the reflectivity and GDR. Varying par-
ameter a will vary both reflectivity FWHM bandwidth,
and GDR. However, minimizing GDR will be accompan-
ied by the loss of reflectivity bandwidth. Figure 2 (a) and
(b) respectively show the effect of implementing HTHU
profile (Eq. 3) with a=1 to the reflectivity bandwidth
and GDR. It can be noticed that the bandwidth reduces
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significantly as the targeted GDR is achieved. This trade-
off shows that the optimization of the apodization pro-
file is very important to obtain optimum performance.
Selecting the optimum point of a solves a tradeoff
between the maximum FWHM bandwidth and mini-
mum GDR. Thus, we rely on a new method to manage
this conflict. This method depends on the relationship
between the normalized apodized mean GDR and the
apodized FWHM bandwidth. Equations (6) and (7)
represent the normalized GDR, F,;,,;. and normalized
FWHM bandwidth, Fp.,awiam where A,p,oq and A,ap0q
are the apodized and unapodized peak to peak GDR
amplitude respectively. BW,,0s and BW,,,,04 are the
apodized and unapodized FHWM bandwidth respectively.

A dla
Fripple - Aﬂpo ( ) (6)
unapod
BW, d\a
Fbandwidth = #‘)(; (7)
unapo

The relationship between F,;,,. and Fyunawiam for the
HEHU apodization profile (Eq. 4) are shown in Fig. 3.

To obtain the optimum value of «, the distance d
which is defined by Eq. (8) is evaluated.

d(a) = \/((Fripple(“))2 + (1_(Fbundwidfh(a))2 (8)

Distance d is measured from the point F;,,,. =0 and
Franawian = 1, to any point on the curve, as depicted in
Fig. 3.

The optimum point of a can be obtained at the mini-
mum value of d, denoted as d,,,;,. Figure 4 (a), Fig. 4 (b)
and Fig. 4 (c) show the values of 4 at different value of
sharpness parameter for different apodization profile. d;,
d, and d; are the shortest distance for HTHU, HEHU
and HHHU profiles respectively. These results occur at
a =13 for HTHU profile, a = 47 for HEHU and a =1 for
HHHU (d; = 0.1209, d, = 0.1935, d3 = 0.2556).
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Fig. 3 Group delay ripple factor ratio versus bandwidth factor ratio
for HEHU apodization (Eq. 4)

Distance, d

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

d.

4

| 1 1 1 |
0 10 20 30 40 50 60
Sharpness Parameter ,a

N HEHU apodization -

Distance, d

h h h h h h
0 10 20 30 40 50 60

Distance, d

Sharpness Parameter,o.

Fig. 4 The distance, d, versus the sharpness parameter, a for (@) HTHU
profile, (b) HEHU profile, (¢) HHHU profile

------- HTHU apodization
------ HEHU apodization
HHHU apodization

o
@
a

ripple
°
®

o

o

a
et e L T

0.2

Normalized GDR, F

0.15

0.1

AN d
0.05 . AGAY
3 \
0 . . . . . . . .
05 055 06 065 07 075 08 08 09 095 1
Normalized FWHM bandwidth, F

bandw idth

Fig. 5 Group delay ripple factor ratio versus bandwidth factor ratio
for three apodization functions

Page 3 of 5




Aladadi et al. Journal of the European Optical Society-Rapid Publications (2016) 12:6

Page 4 of 5

3 dB BW=0.77 nm

I=-- 1040

e B S A EVSS. | SESSEER 780

Reflectivity
Delay, ps

0.4 f-mmmmmmmmgeoo o e R st poeeee 520

0.2 -~ i 260

1 1 I o
2019.74 2020.16 2020.58 2021
Wavelength, nm

2019.32

0
2018.9

Fig. 6 The simulated reflectivity (blue color), the group delay (red color)
with optimized HTHU apodization profile
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Fig. 8 The simulated reflectivity (blue color), the group delay (red color)

with optimized HHHU apodization profile

Figure 5 shows the relationship between Fi, iz and
Fippie for HTHU, HEHU and HHHU apodization profiles
during the optimization process. All apodization profiles
manage to reach the minimum value of F,;,; of around
0.12. In contrast, different values of bandwidth are achieved
for different apodization profile. The FWHM bandwidth
for HTHU profile is the closest to the targeted value
(0.8 nm), which is approximately 96.27 %. HEHU profile
obtained 85.56 % and 77.71 % is recorded for HHHU pro-
file. Therefore, we decided that HTHU is the best among
the 3 optimized apodization profiles, and is the best to be
used in the design of the CFBG.

Figure 6 shows the reflectivity response of CFBG and
corresponding group delay after applying the HTHU
apodization profile with & =13. In comparison to Fig. 1
(unapodized case), the FWHM bandwidth is reduced by
around 0.03 nm. This reduction is acceptable as it may
not significantly affect the characteristic of the system.
Figure 7 and Fig. 8 show the reflectivity responses and
corresponding group delay after applying HEHU and
HHHU apodization profiles respectively. The values of a
are 47 and 1 for HEHU and HHHU apodization profiles
respectively. The percentage bandwidth loss in case of
HEHU and HHHU are 14.5 % (0.115 nm) and 22 %
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Fig. 7 The simulated reflectivity (blue color), the group delay (red color)
with optimized HEHU apodization profile

(0.18 nm) respectively. On the other hand, with the best
optimized apodization profiles, the GDR is reduced to
the minimum extent. These results show that our target
to design a CFBG that can become the CDC with
optimum performance has been achieved.

Conclusions

HTHU profile is found to be the best apodization profile
in designing high performance CDC. The optimization
method used in this work is a good technique to evaluate
and optimize the apodization profile. Our results show
that by using HTHU profile, CDC working at 2000 nm
wavelength range can be realized with optimum perform-
ance. Apart from the tested wavelength, with minimum
modification, this optimization method can also be used
for other bands. This report may become very important
for the CDC researchers especially those who have inter-
est in exploring the future 2000 nm bands.
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