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Abstract

Background: The height estimating function is very important for three-dimensional (3-D) measurement systems based
on a digital light processing (DLP) projector and a camera. Sinusoidal fringe patterns of the projector are projected onto
an object, and the phase of the measuring point is calculated from the camera image. Generally, the least-squares
method (LSM) and look-up table(LUT) method are typically used to obtain the phase-to-height relationship.

Results: The merit of LSM is that one equation is obtained from geometric analysis, but it has difficulty incorporating
lens distortion. The LUT method can obtain an exact model that includes lens distortion, but the amount of memory
needed increases with the number of pixels because each model is obtained at each pixel. This paper compares for
these two methods and proposes an improved LSM using LUT.

Conclusions: The proposed method has one equation like the case of LSM, but the modeling result is better than LSM
because lens distortion is fully considered.

Keywords: Shape measurement, Fringe pattern projection, Phase-height relationship, Lens distortion

Abbreviations: 3-D, Three-dimensional; CCD, Charge-coupled device; DLP, Digital light processing; FPP, Fringe pattern
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Background
Three-dimensional (3-D) measurement using optical sen-
sors has been studied extensively for applications because
of the intrinsic noncontact nature and its high speed of the
method [1]. A typical 3-D measurement system based on a
fringe pattern projection (FPP) system [2–14] is con-
structed using a white light projector and a charge-coupled
device (CCD) camera. The projector projects sinusoidal
fringe patterns onto an object, and the CCD camera ac-
quires the patterns that are deformed by the object’s shape.
The height information of the object is encoded into the
deformed fringe pattern recorded by the CCD camera. In
this measurement system, it is very important to obtain the
phase-to-height relationship, for which there are three prin-
cipal calibration methods [4, 10].
The first method is based on measuring geometric

parameters. This method relies on a certain measurement
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setup in which the geometric parameters and the intrinsic
parameters must be precisely determined in advance. Ap-
proaches for deriving the phase-to-height model usually
employ various simplifying assumptions, such as simple
optical arrangements, small angles, or large distances be-
tween the projector and object compared to the illumi-
nated area [3–5]. Although such approaches are simple,
they would be impossible to use for complex optical ar-
rangements because it is very hard to measure the pos-
ition of the focus and the direction of the center line for
the camera. Particularly, even if the related parameters
can be precisely measured, it is absolutely impossible to
consider the error from lens distortion. Therefore, this
method will be excluded in this paper because the effect
of lens distortion has to be considered in the phase-to-
height model.
The second method is based on the least squares method

(LSM) to determine the phase-to-height relationship pre-
sented by a mathematical description [6–10]. This method
is more flexible in terms of implementation since it allows
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Fig. 1 Generalized FPP system based on the least squares method
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the system to be arranged arbitrarily and avoids the prob-
lems of accurate geometric parameter determination. Du
et al. proposed an equation for the phase-to-height relation-
ship using the coordinate transformation matrix with an ar-
bitrarily arranged fringe projection profilometry system [8].
The equation is a fractional expression with 11 parameters
and 3 variables: the phase value, the horizontal coordinate,
and the vertical coordinate of the camera. This method
uses precise height information such as standard gauge
blocks to obtain the related parameters. However, it is hard
to measure an object precisely because the equation does
not consider lens distortion. Lens distortion consists of ra-
dial and tangential components. Huang et al. [10]
considered the radial lens distortion to improve the model
by Du et al. [8], and the number of the parameters in the
equation was increased to 27 for the same variables. The
modeling errors were greatly improved even though, only
the radial lens distortion was considered. However, it is no
longer possible to improve the modeling errors using one
modeling equation for the entire working volume.
The third method uses a simple look-up table (LUT)

containing the relationship between phase values and
heights for each camera pixel [11–14]. The LUT method
obtains the phase-to-height relationship for each pixel
without any geometric analysis and then stores the infor-
mation in the LUT, which it uses to measure the height.
It is possible to obtain the exact model including all lens
distortion of the camera or the projector with this
method, but there are as many modeling functions as
there are camera pixels. Liu et al. [11] expressed the
height as a fifth order polynomial function of the phase
at each pixel to consider all lens distortion and mea-
sured the related phases for 21 different heights. When
the parameters were determined by the LSM, the model-
ing results were very good. Guo et al. [12] presented a
rational function instead of a polynomial function at
each pixel. Because the rational function is derived from
the geometry of the measurement system, it achieved
higher accuracy than the polynomial function in the meas-
urement noise produced by the inherent divergent illu-
mination of a projector. Jia et al. [13] formulated linear
and nonlinear equations for the mapping relationship
between the phase and height of the object surface.
They showed that the nonlinear calibration model
expressed as the rational function was superior to the
linear one in terms of measurement accuracy. Most
of the LUT methods use a precise z stage for the
calibration of the phase-to-height model. However, Li
et al. [14] proposed a checker board(a plane board
with calibration squares) instead of a precise linear z
stage, which made it was possible to estimate the
height from the size of the squares.
Most research on the phase-to-height relationship

focuses on how the modeling error can be reduced in spite
of lens distortion. The LSM model uses one modeling
equation for all the pixels, while the LUT method uses
pixel-based models to reduce the error by lens distortion.
This paper compares the modeling errors between the
LSM and the LUT methods and proposes one equation
for the phase-to-height relationships with the accuracy of
the LUT method. The proposed method is a fusion
method that obtains the phase-to-height relationships for
each pixel using the LUT method and merges them into
one equation to apply to all of the pixel points.
The rest of the paper is organized as follows. In

section Phase-to-height relationship by LSM, two repre-
sentative LSMs are introduced and compared with each
other. One method neglects lens distortion, and the other
considers partly it. Section Phase-to-height relationship by
LUT introduces the conventional LUT method and its
modeling results are compared with that of the LSM.
Section Improved LSM using LUT presents the improved
LSM based on the LUT, which is expressed as one
fractional equation like the LSM. Conclusions are given in
section Conclusions.

Methods
Phase-to-height relationship by LSM
Geometric analysis
Figure 1 illustrates a typical setup of a generalized FPP sys-
tem [8]. The reference plane Oxy, camera imaging plane
O’x’y’, and projection plane O”x”y” are arbitrarily arranged.
P represents an arbitrary point on the object, B is the im-
aging point of P, D is the original fringe point projected at
P, and A and C are the lens centers of the camera and the
projector, respectively. For convenience and clarification,
the coordinates of a point in a coordinate system are de-
noted by the corresponding coordinate symbols, and the
symbol of the point is chosen as the subscript. For example,



Fig. 2 3-D Measurement equipment using the camera and
projection Moir
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point P is denoted as (xp, yp, zp), (xp’, yp’, zp’), and (xp”, yp”,
zp”) in coordinate systems Oxyz, O’x’y’z’, and O”x”y”z”, re-
spectively. Based on the coordinate relations among points
P, A, and B in the system Oxyz, we obtain:

xP−xA
xB−xA

¼ yP−yA
yB−yA

¼ zP−zA
zB−zA

: ð1Þ
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Fig. 3 Modeling errors by LSM without considering lens distortion
A typical coordinate transformation of point B from
system O’x’y’z’ to system Oxyz is as follows:

xB
yB
zB

2
4

3
5 ¼

xO0

yO0

zO0

2
4

3
5þ Rot z; γð ÞRot y; βð ÞRot x; αð Þ

x′B
y′B
z′B

2
4

3
5;

ð2Þ
where Rot(z, γ), Rot(y, β), and Rot(x, α) are the coordinate
transformation matrices, and α, β, and γ are the rotation
angles of the x’, y’, and z’ axes based on the reference co-
ordinate system Oxyz, respectively. Finally, the height of the
object based on the least squares method is as follows [8]:

zp ¼ 1þ c1ϕ þ c2 þ c3ϕð Þx′B þ c4 þ c5ϕð Þy′B
d0 þ d1ϕ þ d2 þ d3ϕð Þx′B þ d4 þ d5ϕð Þy′B

; ð3Þ

where zp is the out-of-reference-plane height at point
(x,y,z) on the object, coefficients c1 to c5 and d0 to d5 are
constant coefficients that need to be determined from
geometric information such as the position and direction
of the camera and the projector, and ϕ is the fringe
phase at the same point. Eq. (3) cannot consider the lens
distortion because it is derived from geometric analysis.
Generally, if the lens distortion is not considered, it is
not difficult to reduce the modeling error for the phase-
to-height relationship. Because the lens distortion con-
sists of the radial lens distortion and the tangential lens
distortion, the new normalized point coordinate (xd, yd)
is defined as follows [10]:

xd ¼ x′B þ dxr þ dxt ; ð4Þ

yd ¼ y′B þ dyr þ dyt ; ð5Þ

where dxr and dyr are the position error caused by the
radial lens distortion, while dxt and dyt are the position
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Fig. 4 Modeling errors by LSM with considering radial lens distortion

Chung Journal of the European Optical Society-Rapid Publications  (2016) 12:11 Page 4 of 11
error from the tangential lens distortion, which are
defined as:

dxr ¼ kc1R
2 þ kc2R

4
� �

x′B; ð6Þ

dyr ¼ kc1R
2 þ kc2R

4
� �

y′B; ð7Þ

dxt ¼ 2kc3x
′
By

′
B þ kc4 R2 þ 2x′

2
B

� �
; ð8Þ

dyt ¼ kc3 R2 þ 2y′
2
B

� �
þ 2kc4x

′
By

′
B: ð9Þ

where kc1, kc2, kc3, and kc4 are the constant coefficients of
camera lens distortion, and R is defined as R2 ¼ x′

2
B þ y′

2
B .

Since the radial distortion is usually much larger than the
tangential distortion in modern optics, kc3 and kc4 can be
reasonably discarded. It is very difficult to calculate the
inverse function for the variables x’B and y’B because the
tangential distortion includes the term of the multiplication
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Fig. 5 Modeling errors using first-order function for each pixel in LUT meth
of x’B and y’B. Therefore, if the tangential distortion (dxt
and dyt) is ignored, the point coordinate is simplified as:

x′B ¼ xd
1þ kc1R2 þ kc2R4 ≈ 1−kc1R2−kc2R4

� �
xd; ð10Þ

y′B ¼ yd
1þ kc1R2 þ kc2R4 ≈ 1−kc1R2−kc2R4

� �
yd ð11Þ

The height of the object considering the radial distor-
tion is rewritten as follows [10]:

zp ¼
1þ c1ϕ þ c2 þ c3ϕð Þxd þ c4 þ c5ϕð Þyd þ c6 þ c7ϕð ÞR2xd
þ c8 þ c9ϕð ÞR2yd þ c10 þ c11ϕð ÞR4xd þ c12 þ c13ϕð ÞR4yd

d0 þ d1ϕ þ d2 þ d3ϕð Þxd þ d4 þ d5ϕð Þyd þ d6 þ d7ϕð ÞR2xd
þ d8 þ d9ϕð ÞR2yd þ d10 þ d11ϕð ÞR4xd þ d12 þ d13ϕð ÞR4yd

;

ð12Þ
where the coefficients c0 to c13 and d0 to d13 are constants.
The coefficients should be determined in advance using
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Fig. 6 Modeling errors using second-order function for each pixel in LUT method
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the least-squares method based on the phase data for the
several reference planes for which the heights are known.

Experimental results
Figure 2 shows 3-D measurement equipment using cam-
eras and a beam projector [15]. The equipment consists
of black and white CCD cameras (AOS MPX1350,
1280× 1024 pixels, and 8-bit data depth), a digital light
processing (DLP) projector (LG HS200G, 800 × 600 pixels),
a personal computer for image processing, and a three-
axis stage for camera calibration. The stage has a repeat-
ability accuracy of 0.001 mm, and the z-axis is only used
to obtain focuses of the projector and camera during the
calibration for 3-D measurement. In the experiments, the
basic period of the fringe pattern was set to eight pixels,
and the eight-bucket algorithm with eight different phases
was used in the phase shift method. Because the horizon-
tal resolution of the projector is 800 pixels, the gray code
patterns of seven bits were necessary to distinguish
100 different periods. The measuring range was set to
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Fig. 7 Modeling errors using third-order function for each in LUT method
100 × 100 × 50 mm for the x-y-z axis because the
focal depth of the z-axis is relatively sensitive to the
x- and y-axes.
A training set is necessary for the training process of

the coefficients in the LSM and is formed by training
pair vectors. In the phase-to-height relationship, 3-D
points are used as the training pair vectors. To obtain
the related coefficients, the LSM needs more training
pair vectors than the number of the coefficients. Eqs. (3)
and (12) need at least 11 and 27 training pair vectors,
respectively. If the training pair vectors use 5 dif-
ferent heights for the z-axis (every 12.5 mm from -25
to +25 mm) and 5 different positions with 200 pixel
intervals for each axis of the camera, the number of
the training members N is 125 (5 × 5 × 5). Using the
training set, each coefficient is adjusted to minimize
the modeling error by the gradient descent method.
However, it is very easy to obtain the coefficients if
the pseudo-inverse matrix in Matlab is used for the
125 points.
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Fig. 9 Camera image of projected fringe pattern distorted by lens
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Fig. 8 Modeling errors using fractional function for each pixel in LUT method
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The camera coordinates (xd, yd) are obtained by nor-
malizing the camera pixel coordinates (u, v) for the cam-
era center. Figure 3 shows the modeling errors of the
horizontal line (v = 500) in the phase-to-height relation-
ship obtained using Eq. (3). The modeling error is the
difference between the real height and the modeling
height. Because lens distortion is neglected in Eq. (3),
the errors greatly change according to the u-coordinate.
Eq. (3) is not suitable as a phase-to-height model be-
cause the maximum errors are as large as ±2 mm.
Eq. (12) considers the radial lens distortion. Figure 4
shows the modeling errors for when 27 coefficients of
Eq. (12) are obtained using 125 reference points and
Matlab functions, and the errors are fairly reduced to
±0.15 mm. However, even with 6,237 (63 × 9 × 11) more
reference points than 125, the modeling errors do not im-
prove any further. For less error, it is necessary to derive
an equation that includes the tangential lens distortion,
which is very difficult to achieve using geometric analysis.

Phase-to-height relationship by LUT
Improvements in the modeling errors of LSM are limited
because it is difficult to obtain a modeling equation that in-
cludes tangential lens distortion. However, a method that
uses LUTs to consider lens distortion can reduce the er-
rors. An equation for the LUT method can be simply de-
rived from Eq. (12) because the normalized point
coordinate (xd, yd) is constant at each camera pixel. The
LUT contains the related coefficients that appear in the
phase-to-height relationship for each pixel. In this method,
the height for each pixel is obtained as a fractional equa-
tion or a polynomial equation of the phase value [11–14]:

zp ¼ 1þ c1ϕ
d0 þ d1ϕ

¼ e0 þ e1ϕ þ e2ϕ
2 þ…þ enϕ

n; ð13Þ

The height can be modeled as a first-order polynomial
function of the phase for each pixel, and Fig. 5 shows
the resulting modeling errors according to the height
and the u-coordinate of the camera. The modeling
errors have a parabolic form for the height because lens
distortion is absolutely not considered in the equation.
The maximum errors are a little reduced to ±1 mm com-
pared with the errors of Fig. 3 for the LSM excluding lens
distortion. Figure 6 shows the modeling errors for when
the height is modeled as a second-order function. The
maximum errors are greatly reduced to ±0.1 mm, and the
errors are a little improved compared with Fig. 4 for the
LSM including lens distortion. Figure 6 shows that the
height model of the second-order equation in the LUT
method can partly reflect lens distortion. However, errors
for the height still remain in the form of a cubic function
for the height.
To reduce the errors, a third-order equation can be

applied to the height model, and Fig. 7 shows that the
modeling errors are reduced to ±0.05 mm. However,
there are no more improvement of the modeling errors
for the higher-order polynomial functions. The figure
shows that the height model of the third-order function
can resolve the tangential lens distortion as well as the
radial lens distortion. However, if the height model of
the third-order function is used in the LUT method,
memory of about 5.2 million array elements is necessary
for the camera with the 1280×1024 pixels because each



Fig. 10 Four coefficients in polynomial model
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pixel needs 4 coefficients for the modeling equation.
Thus, too much memory is used in the LUT method.
Figure 8 shows the modeling errors for when the frac-
tional Eq. (13) is used. Although the fractional equation
has 3 coefficients, the errors are more similar to the er-
rors of Fig. 7 with 4 coefficients than the errors of Fig. 6
with 3 coefficients. Because the fractional equation is
more effective for the height model, the memory needed
can be reduced by 1.3 million array elements in the LUT
method.

Results and discussion
Improved LSM using LUT
As shown in Figs. 7 and 8, the height model using the
LUT method is superior to the LSM. However, the LSM
model can be expressed as one equation, while the LUT
model consists of a huge numbers of equations. There-
fore, it is necessary to combine the height-to-phase
models obtained from the LUT method into one
equation including the camera coordinates. To extend
Eq. (13) for each pixel to the equation including the en-
tire pixels like Eq. (12), it is necessary to represent all
the coefficients in the LUT as a function of the u and v
coordinates. If the y’-axis of camera imaging plane O’x’y’
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Fig. 11 Three coefficients in fractional model
is adjusted to be parallel to the y”-axis of projection
plane O”x”y”, the camera image can be captured as
shown in Fig. 9. The image shows that the fringe pattern
is generally parallel to the vertical axis of the camera but
is a little bent on the edge by lens distortion. Because
each pair of fringe pattern means a phase difference of
2π, the phase value greatly changes for the horizontal
axis while it hardly changes for the vertical axis. To
combine the coefficients of the LUT, they must mono-
tonically increase or decrease. Figure 10 shows the vari-
ation of the coefficients for the horizontal center axis
when the model is obtained by the third-order equation
with four coefficients. The constant and first-order terms
among the four coefficients monotonically increase or
decrease, while the second and third-order terms are
not. Because the coefficients include rapidly changing
terms, it is nearly impossible to express them as polyno-
mial functions of the u value.
To remove the rapidly changing terms, the number of

coefficients in the phase-to-height model must be re-
duced. However, because the modeling errors for the
second-order polynomial function are similar to those of
the LSM, there are no benefits for using the LUT
method. On the other hand, when a fractional equation
00 800 1000 1200
oordinate
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such as Eq. (14) is used, the modeling errors are similar
to those of the third-order model as shown in Figs. 7 and
8, even though the number of coefficients is reduced.

zp ¼ 1þ c1ϕ
d0 þ d1ϕ

¼ 1=d1 þ c1=d1ð Þϕ
d0=d1ð Þ þ ϕ

¼ H þ b
aþ ϕ

; ð14Þ

whereH = c1/d1, a = d0/d1, b = 1/d1-(c1/d1)(d0/d1). Figure 11
shows the variation of three coefficients for the horizontal
center axis when the LUT is obtained by the fractional
model of Eq. (14). Because a, b, and H have no rapid
change unlike the cases of Fig. 10, the LUT values at
v = 500 can be combined into a polynomial function
of the u value.
Figure 12 shows the modeling errors obtained using the

combined functions instead of the LUT for a, b, and H.
Even though each coefficient (a, b, and H) is expressed by
the fifth-order polynomial functions, the modeling errors
are very big and worse than those of the LSM shown in
-200

500

1000

-0.2

-0.1

0

0.1

0.2

u-coordinate

)
m

m(rorre
gnil deo

m

Fig. 13 Modeling errors using fixed H in LUT method
Fig. 4. To find the cause for the modeling errors, we inves-
tigate the sensitivity of the parameters a, b, and H for the
height. The sensitivity is characterized by ∂zp/∂H = 1, ∂zp/
∂a = b/(a + ϕ)2, and ∂zp/∂b = 1/(a + ϕ). The sensitivity ∂zp/
∂H = 1 means that the error of H directly affects the height
zp, while the errors of a and b are reduced by b/(a + ϕ)2

and 1/(a + ϕ), respectively. Therefore, it is very important
to reduce the modeling error of H to measure the height
precisely. The coefficient H shown in Fig. 11 is nearly con-
stant, but there are many fluctuations upon closer exam-
ination. It is very difficult to represent the fluctuation as a
fifth-order polynomial function. In geometric analysis, H
is the height from the reference plane to the lens focus of
the projector [15]. If lens distortion is ignored, H is con-
stant, regardless of the camera coordinates as shown in
Eq. (3), but it may change if lens distortion is consid-
ered. Because H is nearly constant and varies only
slightly with lens distortion, Eq. (14) can be modified
as an equation with a constant H. Using the average
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Table 1 Modeling coefficients for sampled x-z planes

v a0/b0 a1/b1 a2/b2 a3/b3 a4/b4 a5/b5

100 53.274/-54449 -216.63/23488 46.962/-6035.1 -33.211/-4008.9 16.705/-2824.6 -13.417/3008.8

300 52.611/-54412 -257.74/23081 42.901/-5166.2 -25.114/-2098.2 13.512/-2209.5 -19.354/4707.0

500 52.128/-54433 -255.82/22857 40.049/-4513.0 -21.537/-1539.1 14.513/-2548.9 -21.383/4904.7

700 51.910/-54540 -255.69/22839 38.860/-4171.5 -22.115/-1841.5 13.480/-2357.2 -13.304/2684.3

900 51.646/-54639 -256.95/22947 39.330/-4266.2 -23.079/-2004.2 13.295/-2362.3 -11.644/2423.1
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value of H, the LUT for the remaining coefficients a
and b is calculated at each pixel. The coefficients a
and b are then expressed by the following polynomial
functions for the horizontal value u:

a ¼ a0 þ a1uþ a2u
2 þ⋯þ anu

n; ð15Þ

b ¼ b0 þ b1uþ b2u
2 þ⋯þ bnu

n; ð16Þ

where a0 to an and b0 to bn are the coefficients of the
polynomial functions of a and b, respectively. Figure 13
shows the modeling errors for when the fifth-order func-
tion is used for the coefficients a and b, and the errors
are very similar to those of the LUT in Fig. 8. Compared
with the LSM, the error improvement is more than dou-
bled. Thus, 2,560(2×1280) array elements of memory in
the LUT are reduced to 12 coefficients for a0 to a5 and
b0 to b5 at the horizontal line of v = 500.
Next, it is necessary to obtain the quintic models of

the coefficients a and b for the different horizontal lines.
However, we can expect the models to be slightly differ-
ent because the phase values on the vertical axis are in-
fluenced by lens distortion, as shown in Fig. 9. Table 1
shows the coefficients of the quintic modeling functions
for five different vertical values (v = 100, 300, 500, 700,
900). As expected, most of the coefficients are similar to
each other, as shown in the table. The coefficients of the
constant and the first-order term are very similar, re-
gardless of the vertical values. Therefore, the 12 coeffi-
cients for a0 to a5 and b0 to b5 can also be presented as
a polynomial function for the vertical value v. When
each coefficient in Table 1 is presented as a third-order
polynomial function of v, the 12 equations are as
follows:

a u; vð Þ ¼ a0 vð Þ þ a1 vð Þuþ⋯þ a5 vð Þu5; ð17Þ
Table 2 Coefficients of a and b by LST

d/e a0/b0 a1/b1 a2/b2

d0/e0 52.16/-54440 -255.7/22840 40.11/-4514

d1/e1 -1.461/-385.5 6.100/-873.7 -10.56/2584

d2/e2 1.752/-598.7 -21.90/2303 19.02/-4036

d3/e3 -3.488/898.8 -2.250/1418 7.822/-2712
b u; vð Þ ¼ b0 vð Þ þ b1 vð Þuþ⋯þ b5 vð Þu5; ð18Þ
where,

a0 vð Þ ¼ d0;0 þ d1;0vþ d2;0v
2 þ d3;0v

3;

:

a5 vð Þ ¼ d0;5 þ d1;5vþ d2;5v
2 þ d3;5v

3;

b0 vð Þ ¼ e0;0 þ e1;0vþ e2;0v
2 þ e3;0v

3;

:

b5 vð Þ ¼ e0;5 þ e1;5vþ e2;5v
2 þ e3;5v

3:

The coefficients for d0 to d3 and e0 to e3 are calculated
by LSM using the values of Table 1. Table 2 shows the
coefficients presented in Eqs. (17) and (18) when the
values for a0 to a5 and b0 to b5 are presented as third-
order polynomial functions of v. Finally, the phase-to-
height relationship including the camera coordinates is
as follows:

zp u; v;ϕð Þ ¼ H þ b u; vð Þ
a u; vð Þ þ ϕ

; ð19Þ

Eq. (19) is based on the LUT method and includes the
camera coordinates for the phase-to-height relationship
as in Eq. (12) of the LSM. Because the equation is ob-
tained using only five different horizontal lines, the mod-
eling errors are not guaranteed for the other horizontal
lines. To check the modeling errors for the other hori-
zontal lines, they are examined for the line of v = 400.
Figure 14 shows the modeling results obtained using Eq.
(19) for the line of v = 400. Although this line was not
used to derive Eq. (19), the modeling errors are similar
to the results for v = 500 used in the training, as shown
in Fig. 13.
a3/b3 a4/b4 a5/b5

-23.87/2118 13.83/-2415 -14.26/3100

-1.596/1643 5.875/-1989 36.82/-10470

-35.14/7552 6.855/-887.3 31.12/-7316

97.30/-28280 -68.62/17340 -231/65170
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As another example, Fig. 15 shows the modeling results
for the line of v = 800. The modeling errors are also similar
to the results of Figs. 13 and 14. Most of modeling errors
from Eq. (19) are within ±0.05 mm except for some of the
boundary area. However, the amount of memory for LUT
is dramatically reduced from 2.6 million (2×1280×1024)
to 48(2×4×6) as shown in Table 2. Compared with the
errors of Fig. 4 obtained by the LSM, the modeling error
improvements are still more than doubled, even though
the number of coefficients is increased a little. Therefore,
Eq. (19) considers both the tangential lens distortion and
the radial lens distortion like the LUT method.
In summary, the proposed method can obtain the phase-

to-height relationship and includes the image coordinates.
First, the phase-to-height relationship for each pixel is ob-
tained using the LUT method. Next, the relationships are
combined into one equation for the pixels on the same
horizontal line. Then, the equation includes the u-coordin-
ate the phase for every horizontal line. Finally, the equa-
tions for the horizontal lines are combined into Eq. (19)
including the u- and v-coordinates. The proposed method
is a fusion of the LSM and LUT methods because it has
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Fig. 15 Modeling errors for plane of v = 800 in proposed method
one mapping function but the same accuracy as the LUT
method for 3-D measurement.

Conclusions
The phase-to-height relationship in a 3-D measurement
system is generally obtained by the LSM or LUT methods,
which were compared and combined into an improved
LSM method based on the LUT method. The LSM can
express the phase-to-height relationship as one equation
but it is difficult to fully consider lens distortion. LSM
consists of two different models, one that neglects lens
distortion and another that considers radial distortion.
The latter method has ten times less modeling error.
The LUT method eliminates the effect of the distortion be-

cause each model is obtained at each pixel, but too much
memory is needed. The LUT method shows better perform-
ance than the LSM. This study combined the methods into
one based on the LUT method but expressed as one equa-
tion for the phase-to-height relationship. The proposed equa-
tion is expressed as one fractional equation like the case of
LSM, but the modeling result is better because it considers
tangential lens distortion as well as radial lens distortion.
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