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Absolute surface metrology by shear
rotation with position error correction
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Abstract

Background: Absolute test is one of the most important and efficient techniques to saperate the reference surface
which usually limits the accuracy of test results.

Method: For the position error correction in absolute interferometry tests based on rotational and translational
shears, the estimation algorithm adopts least-squares technique to eliminate azimuthal errors caused by rotation
inaccuracy and the errors of angular orders are compensated with the help of Zernike polynomials fitting by an
additional rotation measurement with a suitable selection of rotation angles.

Results: Experimental results show that the corrected results with azimuthal errors are very close to those with no
errors, compared to the results before correction.

Conclusions: It can be seen clearly that the testing errors caused by rotation inaccuracy and alignment errors of
the measurements can be consequently eliminated from the differences in measurement results by the proposed
method.
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Background
In optical interferometric testing, the test surface map is
not obtained independently but only in combination with
the reference surface. Several ingenious techniques have
been devised to obtain absolute surface measurements, e.g.,
two-sphere [1, 2] method for spherical reference surfaces
and “three-flat” approach for flat surface [3]. However, the
classic two-sphere method with cat’s-eye position measure-
ment is sensitive to the lateral shear of the coma wavefront,
which will introduce astigmatism and spherical terms [2].
For decades, the shift-rotation methods without the testing
of cat’s-eye position have been developed to test spherical
and flat surfaces [4–9]. These approaches yield an estimate
for the test surface errors without changing experimental
settings, such as cavity length, that may affect the apparent
reference errors. The classic multi-angle averaging method
proposed by Evans and Kestner, measures the spherical sur-
face at N angular positions equally spaced with respect to
the optical axis and the resulting wavefronts are averaged,
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then errors in the rotated member with angular orders
that are not integer multiples of the number of positions
will be removed without Zernike fitting [10, 11].
It always assumes that there is no azimuthal position error

during part rotation in the previous absolute test methods.
However, the rotations of the test part introduce uncertain-
ties related to azimuthal errors of the rotational angle and
lateral displacement of the part with respect to the optical
axis of the interferometer [11]. Moreover, rotation should
be very precise when higher order spatial frequency terms
are required, which are particularly sensitive to azimuthal
position errors. In practice, there are challenges to rotate
the test surface accurately to the desired positions, especially
for large optics, and keep the environment and metrology
system stable during the multi-measurements [12]. So we
present a method to determine the true azimuthal positions
of part rotation and consequently eliminate testing errors
caused by rotation inaccuracy.
Method
The shearing test is based on the analysis of differ-
ences in measurement results that occur when rotat-
ing or translating the test surface. The test results
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yield a collection of error maps. Each error map de-
scribes the sum of apparent reference errors and test
surface errors for a particular position and orientation
of the test surface. If the test part is rotated to N
equally spaced positions about the optical axis and
the resulting, we can get the averaged wavefront

Tave ρ; θð Þ ¼ 1
N

XN−1

i¼0

Ti ρ; θð Þ

¼ 1
N

XN−1

i¼0

R ρ; θð Þ þ S ρ; θð Þ½ � ð1Þ

where R(ρ, θ) is the systematic error including the refer-
ence surface, S(ρ, θ) is the surface error of the test part.
The wavefront of circular cross section can be ex-

panded by polar coordinate polynomials in the following
form

W ρ; θð Þ ¼
X
k;l

Rk
l ρð Þ αkl coskθ þ α−kl sinkθ

� � ð2Þ

where Rk
l ρð Þ are the radial terms of Zernike polynomials

and coefficients α�k
l specify the magnitude of each term

while the angular terms specify the angular part of the
polynomial representation. ρ and θ are the normalized
radial and angular coordinates.
From Eq. (2), if the wavefront is rotated to N equally

spaced positions about the optical axis (φ = 2π/N), the
averaged resulting wavefront can be written as
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For k = 0 (i.e., for rotationally symmetric terms), it is
the intuitively obvious result that the procedure has no
influence on rotationally symmetric terms. For k ≠ 0, the
series sum to zero for all coskφ except k = cN(i = 1,2,3….)
and for all sink φ. It is easy to see that rotating a wave-
front to N equally spaced positions and averaging
removes nonrotationally symmetric terms of all angular
orders except kNθ. The term WkNθ(ρ, θ) is the Nth rota-
tionally symmetric component (angular orders kNθ),
which can be written as
WkNθ ρ; θð Þ ¼
X
k;l

−1ð Þk Nþ1ð ÞRkN
l ρð ÞðαkNl coskNθ

þ α−kNl sinkNθÞ ð5Þ
So the averaged test wavefront can be rewritten as

Tave ρ; θð Þ ¼ R ρ; θð Þ þ Ssym ρ; θð Þ þWkNθ ρ; θð Þ ð6Þ
where Ssym(ρ, θ) is the rotational symmetry surface devi-
ation of the test part S(ρ, θ).
Furthermore, the asymmetric component of the test

surface can be derived as

Sasy ρ; θð Þ ¼ Ti ρ; θð Þ−Tave ρ; θð Þ þWkNθ ρ; θð Þ ð7Þ
The errors of angular variation kNθ can be repre-

sented based on Zernike polynomials and additional
shear rotation measurement [9]. And it may be always
neglected in the multi-angle averaging method, when N
is large enough.
Additional measurements provide redundancies to

improve and characterize measurement uncertainties.
However, the rotation of the test part also introduces
uncertainties related to azimuthal errors of the rota-
tional angle and lateral displacement of the part with
respect to the optical axis of the interferometer. The
effect of uncertainties will arise from uncertainties in
the rotational angle. Moreover, there are challenges to
rotate the test surface accurately to the desired posi-
tions, especially for large optics, and keep the envir-
onment and metrology system stable during the
multi-measurements.
So the estimation algorithm should be presentd to

eliminate azimuthal errors caused by rotation inaccur-
acy. And the unknown relative alignment of the mea-
surements also can be estimated through the differences
in measurement results at overlapping areas.
The difference W between the shear rotation measure-

ments can be written as

W ¼ R ρ; θð Þ þ Si ρ; θð Þ−R ρ; θð Þ−Sj ρ; θ þ φð Þ
¼ Si ρ; θð Þ−Sj ρ; θ þ φð Þ
¼
X
k;l

Rk
l ρð Þ Δαkl coskθ þ Δα−kl sinkθ

� � ð8Þ

where Δα�k
l is the differences of the coefficients between

two measurements.
It is trivially obvious to find α�k

l in terms of Δα�k
l

from the difference of two measurements from Eqs.
(4) and (8)

α�k
l ¼ −

1
2

Δα�k
l � Δα∓kl sinkφ

1− coskφð Þ
� �

ð9Þ

This shows that the azimuthal terms of the wavefront
can be determined from the azimuthal terms of the
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difference between the original wavefront and itself after
rotation by φ. So the wavefront can be represented based
on Zernike polynomials. Futermore, the kNθ variations
of surface deviation WkNθ(ρ, θ) neglected in the multi-
angle averaging method can also be obtained by add-
itional rotation testing with a suitable selection of
rotation angles θ0 with k = cN and kθ0 ≠ 2mπ (m is an
integer).
The differences of the coefficients between two mea-

surements can be written as

Δα�k
l ¼ α�k

l coskφi−1ð Þ � α∓kl sinkφi ð10Þ
For azimuthal position error correction, the angle φi

can be treated as additional unknowns together with the
coefficients α�k

l . Then their actual values can be deter-
mined from the measured difference wavefront by least-
squares method. Then the estimation algorithm adopts
least-squares technique to eliminate azimuthal errors
caused by rotation inaccuracy.
From Eq. (8), the wavefront difference can be further

written as
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The cost functions can be obtained by least squares

method and be minimized to determine the true
values of the unknowns of γk0l , ~γ k

0l and φi, as dis-
cussed in [12].
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This generalized algorithm adopts least-squares

technique to determine the true azimuthal positions
of part rotation and consequently eliminates testing
errors caused by rotation inaccuracy. The true values
of the unknowns of γk0l , ~γ k

0l and φi can be obtained
by the iterative procedure. The total computational
time is influenced by the number of terms of Zernike
polynomials in consideration (maximum l and k), the
number of rotation N, and the precision of the initial
guess of φi. Finally, the testing errors caused by rota-
tion inaccuracy can be compensated by the solutions
of γk0l , ~γ

k
0l and φi.
Results
For the verification of the described method, experi-
ments are presented in a standard Fizeau interferom-
eter. The surface under test is a spherical mirror
with a clear aperture of 100 mm and surface error
within λ/10PV. The accuracy of rotations can be bet-
ter than 0.1° and the 5-Axis Mount of ZYGO Com-
pany can provide 13 mm X and Y adjustment,
50 mm Z adjustment and ±2° tip and tilt adjust-
ment. The spherical surface is tested at the normal
testing position and various orientations with the
classic multi-angle averaging method. These ap-
proaches can yield an estimate for the test surface
errors without changing experimental settings, such
as cavity length, that may affect the apparent refer-
ence errors.
The averaged wavefronts for N = 6 and 12 are

shown in Fig. 1. The errors of angular orders kNθ re-
sembling a hexagon can be seen obviously from
Fig. 1a, which may introduce unnecessary measure-
ment errors when it is neglected in the absolute sur-
face metrology. When N is large enough, the terms
2nπ/φ are close to rotationally symmetric deviations,
as shown in Fig. 1b. The errors of angular orders
kNθ can be quite small.
The differences of Fig. 1a and b are shown in Fig. 2a. It

can see clearly that the averaged wavefront are suffering
from the errors of angular orders kNθ. For the compensa-
tion of WkNθ(ρ, θ), the additional rotation testing with a
suitable selection of rotation angles is implemented. The
WkNθ(ρ, θ) of the test surface are restructured and com-
pensated with the help of least-squares fitting of Zernike
polynomials. The differences of Fig. 1a and b after
WkNθ(ρ, θ) compensation can be seen from Fig. 2b,
and the compensated errors of angular variation kNθ
are shown in Fig. 3. The differences of Fig. 1a and b
after compensation are very small. The errors of an-
gular variation kNθ have been well compensated. It
implies that the described method with WkNθ(ρ, θ)
compensation can obtain high accuracy even with
fewer rotation measurements. However, because of
position errors, the errors caused by rotation inaccur-
acy still can be seen from Fig. 2b.



Fig. 1 The averaged wavefront (N = 6 and 12). a N=6, PV=44.10nm, RMS=5.50nm b N=12, PV=37.90nm, RMS=4.75nm
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Furthermore, the averaged wavefront for N = 6 with
position errors (azimuthal errors and alignment error)
introduced is shown in Fig. 4 and the difference of
the averaged wavefront for N = 6 before and after pos-
ition errors introduced is shown in Fig. 5. Figures 1a
and 4 have a similar distribution on optical path dif-
ference and some differences on PV and RMS. More
details can be seen from Fig. 5. The test results are
suffering from the position errors. As mentioned
above, it’s difficult to rotate the test surface accurately
to the desired positions, especially for large optics. There
are also many challenges to keep the environment and
metrology system stable during the multi-averaging
Fig. 2 Differences of the averaged wavefront between N = 6 and N = 12 be
RMS=0.80nm b After compensation, PV=6.30nm, RMS=0.70nm
measurements, especially for large N. So the position error
correction is necessary.

Discussion
In order to correct the errors due to the rotation in-
accuracy, the estimation algorithm adopts least-squares
technique to determine the true azimuthal positions of
part rotation and consequently eliminates testing errors
caused by rotation inaccuracy. The surface is tested on
the precision rotation stage with accurate position and
random azimuthal errors within ±2° respectively.
The Zernike coefficients of the results in absolute surface

metrology are shown in Fig. 6. The Zernike coefficients with
fore and after compensation. a Before compensation, PV=8.27nm,



Fig. 3 Compensated errors of angular variation kNθ. a N=6, PV=8.22nm, RMS=1.07nm b N=12, PV=6.30nm, RMS=0.81nm
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the correction of azimuthal errors and alignment errors are
also shown in Fig. 6. The corrected Zernike coefficients are
very close to those with fine adjustment and no additional
azimuthal errors, compared to the results before correction.
The coma terms (Z7 ~Z8, Z14 ~Z15, Z23 ~ Z24) and
spherical terms (Z9, Z16, Z25, Z36) introduced by the azi-
muthal errors and alignment errors have been well sup-
pressed. It implies that the testing errors caused by rotation
inaccuracy and alignment errors of the measurements can
Fig. 4 The averaged wavefront for N = 6 with position errors
be consequently eliminated from the differences in measure-
ment results by the proposed method.
Conclusions
We discussed the position error estimation algorithm to
determine the true azimuthal positions of part rotation
and the kNθ compensation method to offer possibility to
obtain high accuracy even with fewer rotation
Fig. 5 The difference of the averaged wavefront for N = 6 before
and after position errors introduced



Fig. 6 Coefficients of Zernike polynomials (λ = 632.8 nm)
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measurements. It can be used to overcome the chal-
lenges of rotating the test surface accurately to the de-
sired positions, especially for large optics and obtain the
higher order spatial frequency terms required. Experi-
mental results have been given to verify the effectiveness
of the proposed method.
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