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Abstract

In the printing industry, multispectral line scan cameras are being applied with increasing frequency in print
inspection. This field of application requires highly accurate camera systems. In this article, we describe a novel
approach to determining the accuracy of multispectral measurements recorded by line scan cameras. The approach is
based on Bayesian statistics and paves the way for inline applications. Our approach uses the distribution of color
distances, as expressed by �E values, that arise when the reference color spectra of a color chart are compared with
corresponding spectra reconstructed from the measured camera responses of observed color patches. By means of
18 �E values originating from a color control strip, our approach provides an accuracy evaluation of multispectral
imaging systems with line scan technology. To demonstrate this, four scenarios are considered in which the
multispectral imaging system is used with different measurement accuracies. It is shown that the imaging system in
these cases can be reliably characterized with respect to the quality of the multispectral measurements.
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Background
The use of camera systems to inspect printed materials
is ubiquitous. More and more manufacturers are adopt-
ing optical solutions, since such solutions allow a seamless
monitoring of print jobs at high production speeds and
ensure a reliable detection of defects. Imaging systems
that consist of a camera and a light source, and that pro-
vide accurate measurements, are a prerequisite for these
purposes. Often multispectral line scan cameras are used,
since they combine spectral color measurements with
high speed inspection of continuous materials (as, for
example, printed web). To ensure a sufficient quality of the
measurements of such imaging systems, a simple method
is to stop the production process from time to time to
check the camera and the applied light source. To this end,
a suitable color chart can be integrated into the produc-
tion line and is scanned by the camera. For this purpose,
the color chart has to be conveyed under the camera. A
comparison between the recorded camera responses and
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reference camera responses indicates whether the imag-
ing system has to be recalibrated. However, this procedure
is time-consuming and its implementation is technically
complicated when considering line scan applications.
In this paper, we propose and demonstrate an alterna-

tive method that can serve as a basis for evaluating the
accuracy of multispectral line scan camera systems inline
during the printing process. From a few color patches
arranged on a small strip, camera responses are com-
pletely obtained by a line scan imaging system without
having to move the color strip under the camera by means
of a conveyor; these responses are used to derive corre-
sponding reflectance spectra [1, 2]. Here, the basic idea
is to check whether the differences between these spec-
tra and known reference spectra are acceptable or not. To
quantify such deviations, we use the �E metric [3], which
describes the distance between the colors associated with
these spectra within the CIELAB space, a commonly used,
device-independent colorimetric coordinate system.
Here, we develop a Bayesian approach which uses only

the small number of colors on the control strip and the
corresponding �E values to assess the accuracy of mul-
tispectral imaging systems. Bayesian inference is a well-
established tool for data analysis [4–7] and has already
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found its way into the field of image processing, where
Bayesian methods are frequently employed for spectral-
reflectance recovery and image restoration [2, 8–11].
Because of the small number of colors utilized by our
Bayesian method, the color control strip is small enough
that it can be completely captured by the line scan camera.
In this way, a transport of the strip on a conveyor belt is
avoided. Thus, this procedure does not influence the pro-
duction process, and there is no need to stop the print job.
We demonstrate the performance of our approach by con-
sidering four scenarios in which the multispectral imaging
system is used with different measurement accuracies.
The remainder of this paper is organized as follows: the

basic idea of our approach, together with the experimen-
tal setup, is described in “Basic concept and experimental
setup” section, while “Statistical model” section is dedi-
cated to the statistical model used. Results that demon-
strate the suitability of themethod proposed are presented
and discussed in “Results and discussion” section. Conclu-
sions follow in “Conclusion” section.

Basic concept and experimental setup
Our method for characterizing the accuracy of multispec-
tral imaging systems is based on the �E metric, by means
of which color differences can be quantified [3, 12, 13].
In colorimetry, it is common practice to specify colors
in terms of special coordinates within a corresponding
color space. Often, the Euclidean distance between two
color coordinate points (or modifications of this dis-
tance) is used to express the difference between the colors
associated with these points. Color coordinates can be
calculated by resorting to the underlying reflectance spec-
trum of the considered colors [14]. This spectrum can

be directly obtained, for example, by spectrophotome-
ter measurements. Alternatively, multispectral camera
measurements also make it possible to obtain such a spec-
tral function by means of sophisticated reconstruction
techniques [1, 2].
The basic idea of our approach is to calculate a �E

value for a given color on the color control strip by com-
paring the color coordinates of the reflectance spectrum
previously retrieved from a spectrophotometer with the
color coordinates of the reflectance spectrum obtained by
means of a suitable multispectral imaging system. �E val-
ues derived in this way act as a measure of the accuracy
of the imaging system; small �E values indicate that the
camera measurements were recorded with high accuracy,
while large values suggest a low measurement quality.
Throughout the paper, we use the CIEDE2000 formula
[3, 12, 13] to evaluate color differences; this formula is
embedded in the CIELAB color space. Often, the sym-
bol �E00 for color differences is utilized to indicate this
choice. For ease of presentation, we suppress the sub-
script of �E00 in the following. CIELAB coordinates of
the reflectance spectra are calculated, using the CIE-1931
2◦ standard observer and assuming the CIE-D50 standard
illuminant.
In practical terms, the color control strip should be

small, especially when considering inline applications. To
this end, we have constructed a strip containing only 18
color patches (see Fig. 1), and we propose an accuracy test
utilizing these colors. The control strip was constructed
in such a way that as many color patches as possible
can be completely captured by the imaging system with-
out having to move the strip under the line scan camera.
Nonetheless, color patches should be large enough to

Fig. 1 Illustration of the problem. The task is to infer the �E distribution of a color chart (here with 345 different color patches) from a small sample
(here with 18 values). �E values are obtained by comparing the reference color spectra of the color patches with the corresponding spectra
obtained from multispectral measurements
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ensure a sufficient averaging of camera responses over the
pixels of the camera channels. This led to 18 patches in
our experimental setup. The colors of the strip stem from
a color chart designed and used by Chromasens GmbH.
As illustrated in Fig. 1, this chart consists of an upper part
with 15 color stripes, each composed of 22 identical color
patches, and a lower part with 330 different color patches,
where the colors of the stripes are not used. For our analy-
sis, we took the 330 patches of the lower part together with
15 patches chosen from the middle of each stripe. This
provides 345 different color patches, from which the col-
ors of the control strip were randomly chosen. We assume
that this selection can be considered to be a representative
sample of the 345 colors. The color chart serves another
purpose: it is crucial for the elaboration of our statistical
model in “Bayesian analysis” section, since we also assume
that the 345 colors reflect the color space of the printer to
be inspected to a sufficient extent.
The multispectral imaging system used for our mea-

surements was developed by Chromasens GmbH and
consists of a truePIXA line scan camera, which has 12
image channels, and a Corona II LED line scan illumi-
nation. The camera is arranged at 0◦ with respect to
the surface normal, the light source at 45◦. For measure-
ments on image data as the here considered color chart,
the camera measurement spot is adjusted to approximate
the aperture of a typical spectrophotometer, i.e. circular
shape with diameter of 3 mm and the pixel-wise camera
responses are averaged within this region. The color con-
trol strip considered here has a rectangular shape with a
dimension of about 10 mm times 0.127 mm. The 10 mm
are given by the field of view and the number of patches,
and the 0.127 mm correspond to the height of a pixel of
the line scan sensor. This is a compromise between the
number of patches and the number of pixels within a patch
for averaging and outlier removal.
We apply the reconstruction method reported in [1]

with a linear kernel in order to compute reflectance spec-
tra from the camera response data. Reference reflectance
spectra are recorded with a Konica Minolta FD-7 spec-
trophotometer. Camera response data are acquired with
different measurement accuracies: we gradually reduce
the measurement quality of the imaging system by chang-
ing the current of the LEDs of the light source from 100%
to 70% in steps of 10% (related to the current feed of a well-
calibrated case, called scenario 1 below), thus simulating a
potential technical defect of the system. For each current
feed, we calculate�E values by comparing reference spec-
tra from the color chart and from the control strip with
corresponding spectra estimated from the camera data. In
this way, four measurement scenarios are obtained, pro-
viding a large and a small �E sample with 345 and 18
values, respectively, in each case. As will be shown in the
following, the large samples are used for the elaboration of

our statistical model and, by means of the small samples,
the suitability of our approach is demonstrated.

Statistical model
Probability density function
Our statistical model is based on three basic assump-
tions: (1) for each measurement scenario, �E values are
independent and identically distributed (i.i.d.); (2) samples
of the color chart with 345 different patches reflect the
overall population (derived from all printable colors) suf-
ficiently well; and (3) samples of the color control strip,
in turn, are representative for the color chart. Moreover,
we impose the following requirements on the probability
density function (pdf) sought for �E. First, it has to be
a continuous probability distribution defined on the pos-
itive half-line because �E can only take positive values.
Second, the pdf should contain only a small number of
parameters to control its shape and scale. This restriction
ensures a fast numerical treatment in “Results and discus-
sion” section. Despite its small number of control param-
eters, the pdf sought ought to describe the distribution of
the �E values to a satisfactory extent.
It was determined that the log-logistic distribution is

particularly well-suited for our purpose. The log-logistic
distribution is often applied in survival analysis [15] and
in economics to model the distribution of income [16]. Its
pdf is given by

f (�E|α,β) = βαβ�Eβ−1
(
αβ + �Eβ

)2 , (1)

where α > 0 denotes the scale parameter and β > 0 the
shape parameter. Figure 2 shows log-logistic pdfs (dashed
lines) obtained from a maximum likelihood estimation
(MLE) [17] of their parameters for the measurement sit-
uations considered. In each case, parameter estimation is
based on the assigned �E sample with 345 values. Addi-
tionally, corresponding histograms are given. We observe
in Fig. 2 that the log-logistic pdfs are in good agree-
ment with the histograms. Additionally, we performed a
Kolmogorov-Smirnov goodness-of-fit test [18] to exam-
ine whether the measured data conform to the log-logistic
distribution. To this end, the full sample of 345 �E val-
ues was randomly divided into two subsamples, one with
173 and the other with 172 values. The subsample with
173 values was used to estimate the parameters of the
log-logistic distribution by means of MLE, while the sec-
ond subsample served as input data for the Kolmogorov-
Smirnov test, where the pre-estimated parameters were
used. We repeated this procedure 104 times and calcu-
lated the mean p values for scenarios 1–4, which are 0.410,
0.301, 0.292, and 0.262, respectively. Comparatively large
p values do not refute our assumption that the data are
consistent with the chosen distribution.
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a c

b d

Fig. 2 Representation of the four data sets (containing 345 �E values in each case) as histograms together with corresponding log-logistic
distributions resulting from a maximum likelihood estimation of their parameters: a scenario 1 with α̂ = 0.3483 and β̂ = 2.5797; b scenario 2 with
α̂ = 0.4660 and β̂ = 3.5907; c scenario 3 with α̂ = 0.6546 and β̂ = 4.3827; d scenario 4 with α̂ = 0.8712 and β̂ = 4.7626

Bayesian analysis
During the printing process, camera response data often
arise from only a small fraction of the entire color space of
the applied printer, making probabilistic statements about
the accuracy of the applied camera system difficult. In
the following, we develop a Bayesian treatment based on
the log-logistic distribution that makes such an accuracy
assessment possible by using only a small number of col-
ors. In our case, the likelihood function for the sample
of the 18 �E values �E1, . . . ,�E18 from the color con-
trol strip can be written (under the i.i.d. assumption) as a
product of the individual log-logistic pdfs as follows:

l (α,β ;�E1, . . . ,�E18) =
18∏

i=1
f (�Ei|α,β) . (2)

For the prior distribution of the parameters α and β , we
apply the corresponding (non-informative) Jeffreys prior
[19, 20]

π (α,β) ∝ 1
α
. (3)

According to Bayes’ theorem, the likelihood function,
together with the prior, leads to the posterior distribution

π (α,β|�E1, . . . ,�E18) = C−1 l (α,β ;�E1, . . . ,�E18)
π (α,β)

(4)
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of α and β given �E1, . . . ,�E18, where the normalization
constant is

C =
∫ ∞

0

∫ ∞

0
l (α,β ;�E1, . . . ,�E18) π (α,β) dα dβ .

(5)

The posterior (4) expresses the probability density that
the distribution of�E obeys a log-logistic pdf with param-
eters α and β , given the measured data �E1, . . . ,�E18
from the color control strip.
An advantage of the Bayesian approach is that prob-

abilistic statements can be made conditional on the
observed data. An important quantity in our case is the
probability P that the�E distribution of the 345 patches of
the color chart exhibits at least a proportion P∗ of the pop-
ulation that has values of �E below or equal to a certain
threshold �Eth, mathematically expressed by

Pr (�E ≤ �Eth) ≥ P∗ . (6)

A larger P∗ leads to a stricter requirement on the quality
of the multispectral measurements. In the following, we
restrict ourselves to�Eth = 1. This choice is motivated by
the fact that �E values smaller than 1 are often required
in real applications. For given data �E1, . . . ,�E18, the
probability P can be calculated by

P =
∫∫

DP∗
π (α,β|�E1, . . . ,�E18) dα dβ . (7)

The integration is performed over the region DP∗ in
the (α,β) parameter space, in which the underlying pdfs
for �E defined by the corresponding (α,β) pairs fulfill
constraint (6). This shows the merit of the Bayesian con-
cept. Our Bayesian approach takes into account all pdfs
constructed from the 18 �E values that are compatible
with the desiredmeasurement accuracy. The green area in
Fig. 3 indicates the domain of integration for the example
P∗ = 0.9.
For the numerical treatment of the double integral in

Eq. (7), we divide the (α,β) parameter space into a grid
area with a grid width of 5 × 10−4 for α and 5 × 10−3 for
β . This choice makes it possible to achieve both accept-
able computing times and reliable integration results in
“Results and discussion” section. Additionally, we gener-
ate a matrix indicating grid nodes with 1 if they belong
to the region DP∗ (i.e., the associated pdfs fulfill Pr(�E ≤
1) ≥ P∗ there) and 0 otherwise. The element-wise multi-
plication of this matrix by the posterior matrix (contain-
ing the posterior values for each grid node) ensures the
correct numerical evaluation of Eq. (7).

Results and discussion
We consider four scenarios with different accuracies of
multispectral measurements, as described in “Basic con-

Fig. 3 Part of the two-dimensional parameter space of the
log-logistic distribution. The green-colored domain DP∗ represents
pdfs for �E with parameters α and β , which fulfill Pr(�E ≤ 1) ≥ P∗ .
Here, P∗ = 0.9 was chosen

cept and experimental setup” section. Since our color con-
trol strip consists of 18 patches, we obtain 18 �E values
in each case, which are visualized in Fig. 4 as a strip plot.
As expected, the�E values become larger with decreasing
accuracy of the imaging system.
We have calculated the posterior given in (4) for the

four cases. Figure 5a–d display the isolines of the distribu-
tions in the (α,β) plane. In the first scenario, the posterior
is fairly localized in the (α,β) plane, as can be seen in
Fig. 5a. With decreasing quality of the multispectral mea-
surements, the posterior drops in height and broadens in
width in such a way that its normalization is retained.
Moreover, its maximum moves to larger α values.
From the posteriors shown in Fig. 5a–d we are able to

calculate, for each measurement scenario, the probabili-
ties P that the corresponding �E distribution of the 345
patches of the color chart fulfills the constraints speci-
fied by P∗ [see Eqs. (6) and (7)]. The dashed lines in the
figures indicate the area of integration DP∗ for P∗ = 0.8,
0.85, and 0.9. Findings for the probability P are given in
Fig. 5a–d. As expected, with increasing P∗, probability val-
ues P become smaller for a fixed measurement scenario.
This can be explained by looking at the dashed and dot-
ted lines in the figures, which specify the border of DP∗ .
The border moves upwards and consequently reduces the
domain of integration if P∗ is increased. In other words,
with increasing P∗, a decreasing number of pdfs fulfills the
required accuracy expressed by the P∗ constraint and con-
tributes to the calculation of P. Very small probabilities are
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Fig. 4 Visualization of the �E samples (each with 18 values) for the four measurement scenarios

a c

b d

Fig. 5 Contour plot of the posterior distribution (4) in the (α,β) plane for a given sample of 18 �E values corresponding to a scenario 1,
b scenario 2, c scenario 3, and d scenario 4. Additionally, dashed and dotted lines confining the region DP∗ are shown for three different values
P∗ = 0.8, 0.85, and 0.9 together with corresponding probabilities P calculated according to Eq. (7)
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obtained for the last two cases [see Fig. 5c and d], while
large probability values are calculated for the first two sce-
narios [see Fig. 5a and b]. This is because of the posterior
movement mentioned above. In Fig. 5a and b, the poste-
rior is almost entirely located in the domain of integration
(above the dashed and dotted lines), whereas in Fig. 5c,
most of the posterior and in Fig. 5d almost the entire pos-
terior is outside this area (below the dashed and dotted
lines). Finally, the conclusion can be drawn that scenarios
1 and 2 are very probably in accordance with the required
measurement accuracies specified by P∗ = 0.8, 0.85, and
0.9. However, scenarios 3 and 4 are highly likely to fall
short of the desired measurement quality. Moreover, the
calculated P values in Fig. 5, which decrease from scenario
1 to 4, support the conclusion that our approach allows
a successful classification of the considered cases with
respect to the measurement quality. Future research may
extend these investigations and explore the robustness of
the concept with respect to the influence of printingmate-
rial roughness level, print finish and printing technology
or to situations in which changes are uncorrelated and
restricted to single colors only.

Conclusion
Camera systems are being used in increasing numbers
to inspect the quality of printed products as the applica-
tion of such systems entails many advantages, such as a
seamless and fast inline monitoring of an entire print job.
However, measurements with high accuracy are a prereq-
uisite for this purpose. In this paper, we have developed
a Bayesian method that allows the accuracy of multispec-
tral line scan camera measurements to be checked and a
malfunction of the imaging system to be detected.
A central aspect of our approach is the distribution of

color distances, expressed by �E; these distances arise
when the reference color spectra of a color chart are com-
pared with corresponding spectra obtained from the mea-
sured camera responses of the observed color patches.We
have shown that, by means of 18 �E values derived from
a control strip with 18 color patches, our Bayesian treat-
ment furnishes a probabilistic evaluation of the camera
system’s accuracy.
We have tested our method by considering four scenar-

ios in which the accuracy of multispectral measurements
was gradually reduced by changing the current feed of the
LEDs of the applied light source in order to simulate a
potential technical defect of the system. It was possible to
reliably evaluate the four cases with respect to the qual-
ity of the multispectral measurements. For our examples,
log-logistic probability density functions were used in the
Bayesian treatment, but our approach is not restricted to
this particular probability density function.
The chosen probability density function assumes that

the measurement system operates under repeatable color

generation conditions. When these assumptions are vio-
lated, for example, when single colors are drifting or when
the measurement system changes slowly, the proposed
concept could still be applied provided that the statistical
model is augmented accordingly.

Acknowledgments
The authors gratefully acknowledge funding of this research by the BMWi
MNPQ grant 07/14.

Availability of data andmaterials
Data is presented in the main paper.

Authors’ contributions
The idea for using the color control strip in conjunction with a Bayesian
treatment came from BF. TE, BF and MK conducted the experiments. Data
analysis and method development was carried out by MD, SE and CE. All
authors discussed and evaluated the results and conclusions. All authors read
and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin,
Germany. 2Chromasens GmbH, Max-Stromeyer-Straße 116, 78467 Konstanz,
Germany.

Received: 10 October 2017 Accepted: 11 December 2017

References
1. Eckhard, T, Valero, EM, Hernández-Andrés, J, Heikkinen, V: Evaluating

logarithmic kernel for spectral reflectance estimation – effects on model
parametrization, training set size, and number of sensor spectral
channels. J. Opt. Soc. Am. A. 31(3), 541–549 (2014)

2. Dierl, M, Eckhard, T, Frei, B, Klammer, M, Eichstädt, S, Elster, C: Improved
estimation of reflectance spectra by utilizing prior knowledge. J. Opt. Soc.
Am. A. 33(7), 1370–1376 (2016)

3. Commission Internationale de l’Éclairage (CIE): Improvement to industrial
colour-difference evaluation Tech. Rep. CIE Central Bureau. 142, Vienna
(2001)

4. Berger, JO: Statistical Decision Theory and Bayesian Analysis. Springer
(1985)

5. O’Hagan, A, Forster, J: Kendall’s Advanced Theory of Statistics, Vol. 2B:
Bayesian Inference, Arnold (2004)

6. Gelman, A, Carlin, JB, Stern, HS, Rubin, DB: Bayesian Data Analysis.
Chapman & Hall/CRC (2003)

7. Robert, CP: The Bayesian Choice: From Decision-Theoretic Foundations to
Computational Implementation. Springer (2007)

8. Brainard, DH: Bayesian method for reconstructing color images from
trichromatic samples. In: Proceedings of the IS&T 47th Annual Meeting,
pp. 375–380. Society for Imaging Science and Technology, (1994)

9. Mohammad-Djafari, A: Bayesian inference for inverse problems in signal
and image processing and applications. Int. J. Imaging Syst. Technol.
16(5), 209–214 (2006)

10. Murakami, Y, Ietomi, K, Yamaguchi, M, Ohyama, N: Maximum a posteriori
estimation of spectral reflectance from color image and multipoint
spectral measurements. Appl. Opt. 46(28), 7068–7082 (2007)

11. Mohammad-Djafari, A: Bayesian approach with prior models which
enforce sparsity in signal and image processing. EURASIP J. Adv. Signal
Process. 2012, 52 (2012)

12. Luo, MR, Cui, G, Rigg, B: The development of the CIE 2000
colour-difference formula: CIEDE2000. Color Res. Appl. 26(5), 340–350
(2001)



Dierl et al. Journal of the European Optical Society-Rapid Publications  (2018) 14:1 Page 8 of 8

13. Sharma, G, Wu, W, Dalal, EN: The CIEDE2000 color-difference formula:
implementation notes, supplementary test data, and mathematical
observations. Color Res. Appl. 30(1), 21–30 (2005)

14. Kang, HR: Computational Color Technology. SPIE Press (2006)
15. Bennett, S: Log-logistic regression models for survival data. J. R. Stat. Soc.

C. 32(2), 165–171 (1983)
16. Fisk, PR: The graduation of income distributions. Econometrica. 29(2),

171–185 (1961)
17. Millar, RB: Maximum Likelihood Estimation and Inference: With Examples

in R, SAS and ADMB. Wiley (2011)
18. Conover, WJ: Practical Nonparametric Statistics. Wiley (1999)
19. Jeffreys, H: Theory of Probability. Oxford University Press (1961)
20. Abbas, K, Tang, Y: Objective Bayesian analysis for log-logistic distribution.

Commun. Stat. Simul. Comput. 45(8), 2782–2791 (2016)


	Abstract
	Keywords

	Background
	Basic concept and experimental setup
	Statistical model
	Probability density function
	Bayesian analysis

	Results and discussion
	Conclusion
	Acknowledgments
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

