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Abstract

Background: Phase-shifting interferometry is a kind of important technique used in optical interference metrology.
This technique has high precision and good stability, which has been widely used in scientific research and
industrial production.

Methods: This paper proposes a new method to estimate global phase shift from two interferograms. This method
performs algebraic calculation of two interferograms with the assistance of Hilbert transform. An iterative approach
is used for the attempted phase to ensure that the minimum of assessment function is obtained.

Results: The simulated result indicate that the maximum calculation error of the global phase-shifting is 1.5%. And
then we use experimental data to verify the performance of this method.

Conclusions: The method proposed in this article is simple but precise, and can cope with interferograms with
uneven background and modulation, non-periodic apodization, and random noises. It does not require any specific
carrier frequency of the measured interferogram or any adjustment of range of integration in accordance with the
carrier frequency.
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Background
Phase-shifting interferometry (PSI) is a technique used in
optical interference metrology. This technique has high
precision and good stability, can be implemented through
a variety of hardware, and has been consistently observed
by researchers. Many algorithms have been developed to
retrieve phase from a group of phase-shifted interfero-
grams. Classical phase-shifting algorithms include fixed
steps, variable steps, or random phase-shifting [1]. In re-
cent years, researchers proposed a lot of interesting algo-
rithms, including the two-frame phase shifting algorithms
with regularized fringe pattern [2–4], the unknown or un-
calibrated extraction algorithms [5, 6], and the generalized
phase shifting method [7], etc. On some occasions, global
phase-shifting value is a known value. The estimated value
can be provided through existing information from

previous measurements. However, many PSI algorithms
need to calibrate the influence of phase-shifted errors from
environment vibration, nonlinear response or unbalanced
piezo-electric effect. In some other cases, global phase-
shifting itself is unknown, which needs to be determined
from a series of interferograms.
With respect to solutions of global phase-shifting

values among interferograms, Farrell and Player pro-
posed a method based on Lissajous figure fitting [8].
Brug proposed a method based on calculation of the
correlation between two images [9]. Goldberg and Bokor,
et al., proposed a method based on single-point Fourier
transform [10], which calculates global phase-shifting by
comparing the changes in power of the carrier frequency
between two interferograms. However, all interference
signals have limited length; carrier frequency is not a
single frequency; spectral leakage may occur on the + 1
(or − 1) order signal frequency spectrum. Calculated the
power change in a single frequency, alone, cannot com-
prehensively reflect the change in the global phase-
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shifting and cause the loss of calculation precision.
Guo and Rong, et al., proposed an Energy-minimum
Fourier Transform algorithm (EMFT) [11]. This
method attempts to locate the best range of + 1 (or
− 1) order signal frequency spectrum from the power
spectrum, and therefore can increase the calculation
precision for global phase-shifting under the same
conditions. However, the interferograms from the
measurements are affected by a variety of factors
such as the effect of interferograms apodization, the
uneven background, the signal envelope and the
random noise. As a result, spectral aliasing may
occur between the sideband of + 1 (or − 1) order
spectrum and zero order signal frequency spectrum.
This issue significantly reduces the precision of the
calculation results, especially when the carrier fre-
quency is low. Therefore, some methods for zero
order spectrum elimination or suppression were pro-
posed [12, 13]. In recent years, methods with Hilbert
Transform (HT) and Hilbert-Huang Transform
(HHT), aided by Empirical Mode Decomposition
(EMD) have been used to suppress the unevenness of
background [14–16]. On one hand, this issue reduces
the robustness of the algorithms; on the other hand,
because the generation of interferograms are con-
straint by the detector and hardware configuration,
the choice of carrier frequency is not unlimited. In
order to resolve this problem, Vishnyakov and Levin,
et al., proposed a method to first do subtraction be-
tween two interferograms and then perform the Fou-
rier Transform. This can effectively avoid the spectral
aliasing and preserve relatively high calculation preci-
sion even when the carrier frequency is low [17, 18].
However, under this method, three interferograms are
required for calculation, which limits its applicability.
In this paper, we propose a global phase shifting

extraction method which is simple and direct. This
method performs algebraic calculation of two inter-
ferograms with the assistance of Hilbert transform,
and inserts the attempted global phase shift value
into assessment function for calculation. The process
is repeated until the value of the global phase shift in
determined. The proposed method has better preci-
sion and robustness in scenarios of spectral aliasing
or non-periodic apodization and potential applicabil-
ity in various aspects of digital holography, interfer-
ometry, surface metrology, etc. [19–22]. This paper
introduces the theory behind the method, analyzes
the accuracy and adaptability with numerical simula-
tions and experiment.

Methods
A common expression for an interferogram can be
written as:

It ¼ a xð Þ þ b xð Þ cos φ xð Þ þ kxþ δm½ �: ð1Þ
In which α(x) is the background, b(x) is amplitude

modulation, kx is the carrier frequency, both of which
are functions of x. φ(x) represents phase distribution, δm
represents the global phase shift at the mth measure-
ment, which is the value to be estimated in this article.
The algorithm in this article applies to scenarios with
one-dimensional or two-dimensional interference sig-
nals. One or more row/column of data needs to be se-
lected to determine the global phase shift of the
interferogram. Generally speaking, assuming that the
background and the modulation intensities are un-
changed in the entire phase shifting process, the inten-
sity before and after the phase shift can be written as:

I1 ¼ aþ b cos φþ kx½ �; ð2Þ
I2 ¼ aþ b cos φþ kxþ δ½ �: ð3Þ

The part of zero order frequency is background in-
tensity. The possibility of spectral aliasing can be re-
duced by eliminating uneven background. Subtract
Eq. (3) from (2) and use trigonometric identities to
get:

Im ¼ I1−I2ð Þ= −2ð Þ

¼ b cos φþ kxþ δð Þ− cos φþ kxð Þ½ �

¼ b sin
δ
2

� �
sin φþ kxþ δ

2

� �

ð4Þ
Ip ¼ I1 þ I2ð Þ=2

¼ aþ b cos φþ kxþ δð Þ þ cos φþ kxð Þ½ �

¼ aþ b cos
δ
2

� �
cos φþ kxþ δ

2

� �

ð5Þ
In which Im is generated after uneven background is

eliminated and can be seen as a cosine signal with enve-
lope. Perform the Hilbert Transform and take its im-
aginary part to obtain the cosine expression of Eq. (4).
Because the Hilbert Transform of a sine signal takes the
negative value of its cosine signal:

Imc ¼ −Η Im½ �

¼ b sin
δ
2

� �
cos φþ kxþ δ

2

� �
:

ð6Þ
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In which H[⋅] represents the Hilbert Transform of
the function; Take the phase shift value δ as the vari-
able and incorporate Eqs.(5) and (6) to get:

F δð Þ ¼
Z

l
Ip xð Þ−Imc xð Þ � cot δ=2ð Þ�� ��dx: ð7Þ

This is the test function for the determination of
the global phase shift. Ip and Imc are functions of x;
the range of integral is the length of the entire signal
l. For discretely sampled signals, summation instead
of integration is used. The value to be determined is
δ, the global phase shift corresponding to the mini-
mum value of Eq. (7). The basic steps of the algo-
rithm elaborated in this article include:

1. Capture two linear carrier interferograms, I1 and
I2, that include unknown global phase shift;

2. Calculate for Ip, Im and Imc in accordance with
Eqs. (4), (5), (6);

3. Set the initial value of δ and incorporate Eq. (7) to
calculate the value of the assessment function;

4. Set the range for δ and the step interval Δδ, adjust
the value of δ, and incorporate F(δ) for additional
calculation;

5. Repeat this step until all F(δ) are solved;
6. Find the minimum value of F(δ), which is the global

phase shift to be determined.
Note that when δ → 2πn(n = 0,1,2,—), cot(δ / 2) → ∞.
In this situation, this algorithm is invalid as there seems
to be no phase shift between the two interferograms.
The difference interferograms should be analyzed if this
occurs. If only random noise exists and there is no
periodic change in intensity, then it should be
concluded that no phase shift occurs between the two
interferograms.

Results and discussion
Numerical simulation
To confirm the validity of the method proposed in this
article, we simulated a set of one-dimensional signals
with relatively high carrier frequency, as shown in Fig. 1a.
The corresponding power spectrum of I1 is shown in
Fig. 1b. The range of the selected + 1 order frequency
spectrum is marked in the figure. In the expression of
this signal, α = -0.3x2, b=-0.3(x - 0.02)2 +0.9, the phase
distribution φ = 0.1x2, and the carrier frequency k =
6.6π. 3% random noise is added to this set of signals.
The horizontal coordinates for this set of signals x ∈[–
1.02, 0.90]; the corresponding kx ∈[–6.7π,5.94π]. The
cutoff point of the signal is not selected to be at the pos-
ition of a full cycle of the carrier frequency. The enve-
lope is not centrally symmetrical. The phase shift
between the two interference signals is δ = π/3. Sam-
pling includes 201 points. The odd number for the

Fig. 1 High carrier frequency interference signal; part of the power spectrum curve of I1 and the range of the selected + 1 order window

Fig. 2 The curves of the assessment functions under the method
proposed in this article and under the EMFT method (~ 6 fringes)
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sampling is for the easy search for central frequency
under the EMFT method. The above described interfer-
ence signal module is commonly seen in practice. The
uneven background intensity is included in this pair of
interferograms. The amplitude modulation differs at dif-
ferent positions of the interference fringes. We can see
from Fig. 1a that this set of interference signals include
about 6 fringes. We call it a “high” carrier frequency sig-
nal, in comparison with the signal described later in this
article that includes only 0.5 fringes. It is relative in our
discussion.
We move along the Y-axis the assessment function

curve for the EMFT method in Fig. 2 for comparison
with the assessment function for the method introduced
in this article. As seen in the figure, the EMFT method
can accurately capture the + 1 order when the carrier
frequency is high. The global phase shift determined
under the method in this article and under the EMFT
method are respectively 1.044rad and 1.045rad. Both are
consistent with the set value.
When we keep the other parameters unchanged, de-

crease the carrier frequency to k = 0.7π, and include ap-
proximately 0.35 fringe in the entire signal, the two
interference signal curves are shown as in Fig. 3a. The
corresponding power spectrum is shown as in Fig. 3b. In
this scenario, the error will be greater than under EMFT
if we perform calculation with the single point Fourier
Transform method. Meanwhile, the EMFT method is
useful to increase the precision of determination as it
adjusts the location and the range of the integration
based on different carrier frequencies, but its potential
impacts on the assessment functions from inappropri-
ately chosen windows are also evident. As the carrier
frequency decreases, the + 1 order frequency spectrum
is not readily determinable. We carefully select the range
of the + 1 order frequency spectrum and mark it with a
dotted square in Fig. 3b. Based on the + 1 order fre-
quency spectrum range as shown in the figure, we use

the EMFT method to calculate the assessment func-
tion and portray it, along with the result from the
method from this article, in Fig. 4. As seen from the
curves in the figure, the results from the two
methods are patently different. The result from the
method in this article is δ = 1.025rad, whereas the
phase shift calculated from the EMFT assessment
function is δ = 1.113rad. As our set phase shift value
is δ = 1.047rad, the relative errors for the two
methods are 2.1% and 6.3%. The comparison results
show that the precision from the two methods are
comparable if the fringes are relatively many; but as
fringes are significantly fewer, the reported method is
superior to the EMFT method in its functionality.
In order to further compare the relatively errors be-

tween the two methods, we gradually increase the car-
rier frequency of the simulated signal, i.e. to increase the
number of the interference fringes, and perform calcula-
tion based on the two methods. We report the relatively

Fig. 3 Low carrier frequency interference signal; part of the power spectrum curve of I1 and the range of the selected + 1 order window

Fig. 4 The curves of the assessment functions under the method
proposed in this article and under the EMFT method (~ 0.5 fringes)
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error curves in Fig. 5. When the fringes are few, the cal-
culation errors from both methods increase; as the
fringes increase, the relative errors gradually decrease.
Generally, the method in this article generates lower er-
rors than EMFT; its curve depicting the change in error
is rather flatter, showing that the error values are rela-
tively stable. EMFT, in comparison with the method in
this article, generates higher relatively errors; the fluctu-
ation is also higher. The method introduced in this art-
icle is evidently more advantageous, particularly, when
the fringes are rare.
From the perspective of signal shapes, the above de-

scribed simulated signals include various interfering fac-
tors that may impact the calculation of global phase
shifts, including, as documented in Literature ([21], 33–
34), unevenness in background intensity and modulation
envelopes (α ≠ constant, b ≠ constant), low carrier fre-
quency, signal noises, non-periodic apodization, and etc.
For a linear carrier interferogram, if the signal is non-
periodic, the sideband of the carrier frequency signal will
be broader; if the carrier frequency is not high enough,

then it will spectrally aliased with the baseband signal.
In practice, however, most interference signals are usu-
ally not single frequency. The location of apodization is
not readily selected for reasons such as background and
modulation unevenness.

Experimental results
In this section, we will verify the performance of the al-
gorithm with experiment data. A group of linear carrier
interferograms with a Zygo GPI interferometer has been
recorded. Fig. 6 shows these phase shift interferograms,
the resolution of these images is 256 × 256 pixels. These
interferograms do not have any pre-processed including
filtering or background removal etc. For these interfero-
grams, we perform calculation of data of each row and
column between M1 (Fig. 6a) and M2 (Fig. 6b) with
method mentioned in the previous section. The global
phase shift range to try into the Eq.7 should be [0, 2π],
but in order to avoid infinity, we choose a variable range
of [0.03π, 1.94π] and search step is 0.0047π. And the
corresponding assessment function values of all rows
and columns are shown in Fig. 7a and b respectively.
Each column data in Fig. 7 shows the assessment func-

tion calculated from one slice data, x-axis indicates the
phase step, and the color map means evaluation value.
From the graph above, we can find the minimum point
for each column in the graph, and display the result in
Fig. 8. The solid line in blue and the dot line in red are
represent estimated phase step from each row and col-
umn respectively. The RMS of two curves are 0.018rad
and 0.028rad, while the average values are 1.597rad and
1.610rad. We use the average of the two averages as the
final estimated global phase shift. The running time is
0.32s (mean of 10 independent runs) based on a com-
puter with a 3.3GHz i5 CPU and 8GB RAM using
MATLAB®.
Using the same method, we calculate the global

phase step between M1 (Fig. 6a) and M3 (Fig. 6c),
and plot the result in Fig. 9. The result indicates the
phase step between these two frame is 3.14rad. From

Fig. 5 Comparison of relative errors

Fig. 6 Linear carrier interferograms. (a) M1 (b) M2 (c) M3
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those three phase-shift interferograms, the sought
phase distribution ϕ(x, y) can be extracted by the
equations below.

3
X

cos δið Þ
X

sin δið ÞX
cos δið Þ

X
cos2 δið Þ

X
sin δið Þ cos δið ÞX

sin δið Þ
X

sin δið Þ cos δið Þ
X

sin2 δið Þ

2
64

3
75

D1

D2

D3

2
4

3
5

¼

X
MiX

Mi cos δið ÞX
Mi sin δið Þ

2
64

3
75;

ð8Þ

ϕ x; yð Þ ¼ −arc tan
D3

D2

� �
; ð9Þ

Where, i = 1,2,3, δ1 = 0, δ2 = 1.6037rad, δ3 = 3.146rad.
The phase demodulation result for the considered experi-
mental data is shown in Fig. 10. The linear carrier frequency
pattern has been removed from the unwrapping map.

Conclusions
This article reports a method to estimation the global
phase shift with two interferograms. Compared with
existing methods, this method requires no pre-filtering,
nor does it have specific requirement for the carrier fre-
quency of the interferograms. During the calculation,
this method does not require the selection of a window
for integration. It therefore increases the algorithmic
adaptability and provides easy automatic processing. The

Fig. 7 Assessment function value of each row and column. (a) row (b)column

Fig. 8 Curves of estimated phase step from each row and column
Fig. 9 Curves of estimated phase step from each row and column
between M1 and M3
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method in this article may resolve the problem of global
phase shift calculation when the interference signal faces
a variety of factors such as nonperiodic apodization, un-
even background and modulation. It also has better pre-
cision and robustness than previous methods in
scenarios of spectral aliasing between the + 1 order
spectrum and the zero order spectrum. The method in
this article can calculate the global phase shift with only
two interferograms. We believe that this method has
broad potential applicability in various aspects of inter-
ferogram processing. And it could be extending to
process the closed fringe patterns. In practice, this
method can be used to screen out one or more sets of
interferograms that meet the global phase shift needs
from a series of interferograms for further calculation
and analysis. This article provides the rationale and
process of the calculation under this method, compares
it with the existing method that needs Fourier Trans-
form based on simulated interference signals, demon-
strates the superiority of the method in this article, and
confirms the precision of calculation with this method
with data from experimental measurements.

Abbreviations
EMD: Empirical mode decomposition; EMFT: Energy-minimum fourier
transform algorithm; HHT: Hilbert-Huang transform; HT: Hilbert transform
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