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Abstract

freedom and thus, more complex fields are generated.

momentum

Background: A diffractive spiral axicon can be used for the generation of a vortex beam with orbital angular
momentum. The coaxial superposition of multiple vortices can generate a complex field with off-axis optical vortices.
These fields are known as optical vortex lattices. In general, this superposition is done by the use of spatial light
modulators. Discretization of the continuous spiral in radial and azimuthal direction introduces additional degrees of

Methods and Results: Here, we discuss the basic theory for discretized spiral axicons. Then, as an example, we
consider a discretized multi-pronged element where radial and azimuthal coordinates are discretized. Simulations of
the near-field distribution show the occurrence of additional off-axis vortices with anisotropic character. The number
of off-axis vortices depends on the number of discretization steps in azimuthal direction. Theory is confirmed by
experiments. The diffractive element used in the experiments was fabricated lithographically. For instance, a
Shack-Hartmann sensor was used to measure orbital momentum of on- and off-axis vortices.

Conclusion: Optical vortex fields can be achieved due to the discretization of the continuous spiral axicon. The
resulting field distribution can be seen as superposition of different non-diffracting fundamental vortex modes.

Keywords: Diffractive optics, Spiral axicon, Non-diffractive, Bessel beam, Optical vortice lattice, Optical orbital angular

Background

The spiral axicon is known for generating a field with an
on-axis helical wavefront [1-4]. This wave field carries
an optical angular momentum (OAM) of /A per pho-
ton [5] which can be transferred to particles. In general,
optical vortices (OVs) are connected to points of zero
intensity where the real and imaginary parts are both zero
[6]. These points are phase singularities. In the case of a
helical wavefront, they are also called screw dislocations
(SD). Moreover, these SDs exhibit a topological charge
(TC) of £/ in respect of the phase increasing/decreasing
by £/27 along one circumference around the SD. OVs
are of widespread interest and have found applications in
various areas like atom trapping and micromanipulation
[7], imaging [8], plasmonics [9], optical data commu-
nication [10] and active OAM-emitter in vertical-cavity
surface-emitting lasers (VCSEL) [11].
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Multiple optical vortices have also been demonstrated
in 2D geometries, referred to as optical vortex lattice
(OVL) or optical vortex arrays [12—14]. OVLs can be
created, for instance, by coaxial or noncoaxial superpo-
sition of vortices with different or same TC [13-19]. In
the following these are called fundamental vortex modes
(FVM). Moreover, the motion and the position of the vor-
tices in an OVL along propagation depends on the kind
of superposition (addition of the complex amplitude or
phase term) and the kind of the (host) beam [14, 19-21].
In our investigations we consider the coaxial superposi-
tion of the complex amplitudes of non-diffracting Bessel
beams. The corresponding resulting field distribution can
be described by

k i r) ei(ﬁ6+kzyyhz+k,,,hr) (1)

u(r,0,2) o ) aqiJi (ki

where r, 0, z are the cylindrical coordinates in the observa-
tion plane and 7, m address the corresponding radial and
azimuthal component. Here, the 7nith order of the Bessel
function determines the TC of the vortex so that | = 7.
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The radial and longitudinal components of the wave vec-
tor are denoted by &, and k;, respectively, and a; ;; denotes
the corresponding weighting factor.

Experimentally, Eq. 1 could also be introduced on a
spatial light modulator (SLM) [2, 22]. Next to the possibil-
ity of the precise adjustment of the radial and azimuthal
parameters, the generated wavefield is limited by the spa-
tial bandwidth product (SBP) due to the resolution of the
SLM. This leads to a reduction of the efficiency of the heli-
cal wavefront [23-25], especially in case of the superposi-
tion of higher order of Bessel modes [17]. As it can be seen
by the following results, the structured diffractive spiral
axicon represents another method for the direct genera-
tion of an optical vortex lattice equivalent to the coaxial
superposition of fundamental vortex modes, analogous to
Eq. 1. By the use of the structured spiral axicon, the gen-
erated wavefield is not restricted by any limitation of the
SBP and there is no necessity of additional optical com-
ponents in order to perform the superposition [16, 19].
Here, we consider the case of an element with binary
amplitude transmission, however, results are very similar
for a binary phase transmission.

This article is organized as follows: first, we will intro-
duce the resulting object structure due to the modula-
tion. Then we will present the analytical investigations
describing the resulting field distribution which involves
the determination of optical vortices. A comparison
between analytical and experimental results shows good
agreement.

Methods

Transmission function of the discretized spiral axicon
Discretization of conventional diffractive elements like
Fresnel zone plates and spiral axicons was discussed ear-
lier in [26-28]. Discretization leads to additional degrees
of freedom for the optical design, on the one hand, and
thus more functionality on the other. Here, we consider
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the situation of a discretized spiral axicon as an element,
generally described by Eq. 2.

N-1 M
— 8ro(m, 6o — 36,
o) = 33 rect (w) rect (07001))
n=0 m=1 ﬂr}’p a¢0P
(2)

The mathematical treatment is performed in polar coor-
dinates. In this particular example we express the object
by a product of rect-functions [29] with the center coordi-
nates 8ro(m, n) and 86y (n) described in Eq. 2. The object’s
coordinates are expressed by rp and 6. The structure is
divided into N blades. This leads to an azimuthal frag-
mentation with a period of 6, = 27/N, each with a
constant radial component (see Fig. 1b). The offset of the
radial period increases linearly with each blade. Therefore,
the center coordinates in radial direction of the trans-
parent sections are also dependent on N. We introduce
the following center coordinates as follows: §6p(n) =
(n+0.25) 6, and Sro(m, n) = rp (m — 0.75 + n/N), with
rp denoting the radial period, # and m are the indices of
the transparent sections in azimuthal and radial direction,
and M denotes the number of radial periods.

From Eq. 2, various structures may result, depending
on the variables. Here, in order to understand and show
the basic phenomena that occur due to discretization, we
restrict our investigation to a specific element described
by a, = 1/2 and a4 = 1/2, a Ronchi division in radial and
azimuthal direction as shown in Fig. 1a. Different of other
values for a, and a4 lead to interesting observations, as
described in [30], but will be left out of consideration here.

The resulting transmission function can be developed
as a Fourier series expansion, similar to the mathemat-
ical expression reported in [31, 32], and inserted into
the scalar diffraction formula with Fresnel approxima-
tion [23]. First, the diffraction integral is solved for the
azimuthal coordinate using Jacobi-Anger identity [33] and

Fig. 1 Structured spiral axicon with N = 3 in (a) Cartesian (xo, ¥o) and (b) polar coordinates (ro, ¢o). The transparent sections of the object are

indicated in black
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second, for the radial coordinate using the method of
stationary phase [34, 35], respectively. Here, the object
function is limited by a circ - function with circ(rp/Ro)
in the objects plane. The resulting Fourier components
m and 7 can be seen as the order of the radial and
azimuthal harmonic, respectively. The contribution of the
radial harmonics is limited to the first order for

(3)

in the near-field - region. At a distance z;;—; behind the
diffractive mask, the field distribution can be described as:

oo N-1
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Results and discussion
Near-field distribution
Evaluation of Eq. 4 shows that depending on each N, cer-
tain terms of the series are equal zero. Therefore, only a
finite number of azimuthal harmonics 7 have to be taken
into account generating the resulting field distribution in
the near-field region. Figure 2 gives an overview on the
corresponding intensity distribution of each contributing
azimuthal harmonic 7 along the radial component r in the
transversal observation plane .

The analysis shows that in each case the contributing
azimuthal harmonics can be expressed by # = 1,gN £+ 1
with ¢ € N\{0}. Each contribution results in a weighted

u(r,0,z,N) x 2 A CZ Z sine <'~1> Bessel beam with a TC of | [ |= #. Here, these Bessel
=1 n=0 2N modes are referred to as fundamental vortex modes
, } N (FVMs). Successive FVMs have alternating algebraic sign.
X Jii () (=i)" cos <ﬁ (9 - 9)) 2 (1 +5) The first sign results from the orientation of the object as
p for an increasing slope of the structure (Fig. 1b) it is posi-
(4) tive, for an negative slope negative, respectively. Thus, the
with: result can also be seen as axial superposition of different
) isotropic fundamental vortex modes [32]. Note that not all
1y, j? —iZs . .~ . .
A= —e™ezme 2% (5)  high harmonics 7 have to be taken into account as their
irz contribution is either comparatively low or near zero as
C = circ ( zA ) (6) they cause high orders of the Bessel function (see Eq.4).
rp Ro With respect of a high number of blades (N), the field dis-
o = I 7) tribution of the discretized spiral axicon resembles the not
2z discretized spiral axicon, as the second contribution does
i — (ns 1\ 27 ) not influence the contribution of the first harmonic 7z = 1.
4) N Therefore, for high N, the resulting field distribution near
aa2s —i=1 bos —ic1
2 N=3 —7 =1 2 N=4 —7=5
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Fig. 2 Azimuthal harmonics A contributing to the field according to Eq. 4. Here, the cases @ N = 3 (b) N =4 (¢) N = 5 (d) N = 6 are shown as a
function of r. For all examples, we assume r, = 32 um, M =15andz = 12mm
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the optical axis solely consists of a Bessel beam with the
TCl=1.

The resulting field distributions with corresponding
symmetry axis for different N of the object structure are
illustrated in Fig. 3. All intensity distributions exhibit zero
intensity in the center. Comparing the zero contours of
real- and imaginary part (see right column in Fig. 3) and
the phase distributions (see middle column in Fig. 3), all
distributions contain an on-axis screw dislocation (SD) in
the center.

Further examination of the real and imaginary zero
contour identifies additional off-axis SD at their intersec-
tions. The SDs are arranged symmetrically around the

(2018) 14:18 Page 4 of 9

center leading to an optical vortex lattice. The optical vor-
tices with positive and negative charge are indicated by
blue and red circles in the right column of Fig. 3. Each
phase profile around these singularities exhibits a decreas-
ing/increasing phase with a phase step of A¢ = +2x
corresponding to an optical vortex. Here, the ring inte-
gral was used for the determination of the SDs. The result
leads in all cases to an single charged optical vortex with
the corresponding TC of

i%qudfi:l or [=-1 9)
21

b
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Fig. 3 Resulting field distribution for ry = 32 um, M = 15, A = 632.8 nm and z = 12 mm: (left column) intensity distribution, (middle column) phase
distribution with vortices indicated by black circles, (right column) zero contour lines of real and imaginary part with positive and negative charged
vortices indicated by blue and red circles, respectively, for (@)-(c) N = 3, (d)-(f) N = 4, (g)-(i) N = 5 and (j)-(I) N = 6 blades
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depending on the orientation. Both, the positions of
the PS, and the closed path integral were determined
numerically based on the analytical calculations. Note the
geometrical position of the SD depending on the sym-
metry given by N and the corresponding anticorrelated
(alternating) charge so that OVs of the same charge are
no direct neighbours. For N = 3, Fig. 3 does not indi-
cate all OVs as their spatial extend is small, as they are to
close to neighbouring OVs or they are connected to a low
intensity level.

The angles of the intersection of the zero contour lines
of the real- and imaginary part reveal further character-
istics of the vortices [36, 37]. While for a conventional
isotropic on-axis vortex, the contour lines for N(x) = 0
and J(x) = 0 intersect under an angle of 90°, this is not
true for the off-axis vortices shown in Fig. 3. Instead, here
one observes anisotropic characteristics. Such optical vor-
tices are referred to as non-canonical vortices, which here
also correlates with a non circular symmetry of the inten-
sity distribution of off-axis vortices. This behaviour is
also depicted in Fig. 4a— c, which outlines the phase dis-
tribution along one circumference around the SDs with
the radius r,s. With smaller division ratio in azimuthal
direction of the grating further off-axis vortices occur as
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the amplitudes of the higher azimuthal harmonics rise
[30]. More over, the first order off-axis vortices shown in
Fig. 3 develop a more isotropic behaviour whereas the sec-
ond order off-axis vortices have comparable anisotropic
behaviour like presented in Fig. 4.

The on-axis vortex of the modulated spiral axicon with
N = 3 exhibits rising anisotropic character with increas-
ing rps. The strong anisotropic character in Fig. 4c, on the
one hand, results from the low distance of the circum-
ference to the adjacent negative charged off-axis SD and
on the other hand can also be derived from the strong
curvature of the real and imaginary contour. Equivalent
but weaker behaviour with rising 75 can be observed for
N = 4 and N = 5. The phase distribution’s inclination
becomes more constant with increasing N at higher rps.
Note that the higher the number of blades N of the struc-
ture gets, the more the field distribution corresponds to
the unmodulated spiral axicon.

In the following, the structure with N = 6 will be con-
sidered in detail. In contrast to the on-axis vortex, the
off-axis vortices are unlikely to be isotropic. Figure 4d
shows the phase distribution around one particular off-
axis singularity (xps = yps = 26.38 um for different values
of rps at z = 12 mm for N = 6 blades.

327

1
6/m
Fig. 4 Phase distribution of the on-axis vortex as a function of 6 for different N at z = 12 mm and with the radius of the circumference of (a)

fps = 1 um; (b) rps = 5 um; (€) rps = 11 wm. (d) Phase distribution around the SD at xps = yps = 26.38 um for N = 6 at z = 12 mm with rys as
parameter. Note that the phase distributions for different N (a-¢) and different rys (d) were each shifted by different multiples A8 = 0.25x for a
better overview

7

1
0/m
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For better comparison, Fig. 5a and b depict the
azimuthal phase gradient along one circumference with
different radii r,s around the SD of the on-axis and off-axis
vortex, respectively.

The azimuthal gradient of the on-axis vortex exhibits
sixfold rotational symmetry, which correlates to the six
corners of the on-axis intensity maximum with donut
shape. Moreover, the OV can be seen as isotropic within
a certain range, as the oscillations are comparatively small
for rps < 9.25 um, where the intensity of the on-axis
vortex reaches its maximum. The off-axis vortex shown
in Fig. 5b has in general strong anisotropic behaviour
which increases for higher rps of the circumference, as
in this case, the circumferences also approach adjacent
off-axis SDs.

Further investigations reveal that neither the position of
the SDs changes along z, nor the azimuthal phase gradient
illustrated in Fig. 5 changes along the propagation direc-
tion. The calculated gradient in z-direction d¢(r, 8,z)/9z,
resulting from Eq. 4, has no azimuthal dependencies:

0¢(r,0,2) _, 1 (2n>2_ kr?

r 222

0z 2k (10)

The first and the second terms are the derivative of the
phase connected to the traveling plane wave and the lon-
gitudinal phase variation, respectively. The third term is
the derivative of a quadratic phase front which remains
from the approximation by the method of stationary phase
[35]. Both, the second and the third term are negligi-
ble compared to the first term. Therefore, Eq. 10 shows
that the transversal vortex lattice structure persists along
propagation in z-direction in the above defined near-field
region.

The resulting 2D - phase gradients in Cartesian coor-
dinates are depicted in Fig. 6 for the on- (top row) and
off-axis vortex (bottom row). The value of the gradient is
limited to 45 x 10° for a better overview.

In case of an isotropic vortex, the azimuthal phase gra-

dient, given by %g—g, is proportional to the inverse of the
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radial coordinate, irrespective of the angle 6. In general,
the phase gradient in azimuthal coordinates is associated
with the Cartesian coordinates by:

8¢(x,y) _ o (r,0) cos () — lw sin (6) (11)
0x or r 96

a(b(x,y) _ 8¢(779) sin (9) + EM CcoS (9) (12)
3y ar r 060

For an isotropic vortex the gradient distributions on the
coordinates axes are linked by:

ooy _ _13¢(0) . (0) for x=0 (13)
0x r 00

3¢(x,y) _ 1 a¢(ry 9) cos (9) for y= 0 (14)
ay r a0

Therefore, in both cases, the gradient distributions in
Cartesian coordinates exhibit lobes with different alge-
braic sign above and underneath the x-axis, and right
and left of the y-axis, respectively. This behaviour can be
seen for the x- and y- components of the gradient for the
on-axis vortex (see Fig. 6a, b). The black curve in Fig. 6
indicates the zero-value on the x- and y-axis, respectively.
Furthermore, the dashed lines indicate the axis, where
the absolute value of the x- and y-component equals the
azimuthal phase gradient without respect to the sign. The
orientation of the TC (positive/negative), is given by the
direction of the azimuthal phase gradient. This can in turn
be calculated from the gradient distribution in Cartesian
coordinates, where characteristic lobes are recognizable.
Near the middle point, the solid (which is straight near the
middle point) and the dashed lines are perpendicular to
each other. In the outer region of the distribution shown
in Fig. 6a, b, the distribution loses its mirror symmetry
correlating to the results from Fig. 5.

Figure 6 (bottom row) illustrates the distribution of
the x- and y- component of the gradient for the off-axis
vortex in Cartesian coordinates. Here, this distribution
again exhibits lobes similar to Fig. 6 (top row). In the
off-axis case, the dashed lines in the x- and y - gradi-
ent distribution are curved and not perpendicular to the

— Fum
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1.32 N n N N N N

o 116

=
=
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SD at xps = yps = 2638 um

Fig.5 N = 6 and z = 12 mm: azimuthal phase gradient along the circumference with different r, (@) around the on-axis SD; (b) around the off-axis
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Fig. 6 Calculated transversal phase gradient in Cartesian coordinates at z = 18 mm (left column) or (a)+(c) w; (right column) or (b)+(d) %;’y);

(top row) or (a)+(b) on-axis vortex; (bottom row) or (c)+(d) off-axis vortex. The value of the gradient is limited to £5 x 10° for a better overview. The
solid curves represent lines of zero gradient on the x-axis (y-axis) for the x- (y-) component of the gradient. The dashed lines indicate
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zero lines. The gradient distribution exhibits no mirror
symmetry. This represents the anisotropy and correlates
with the results indicated in Fig. 5. The amount of the x-
component of the gradient in Cartesian coordinates does
not equal the azimuthal phase gradient on the dashed
line in this case, neither does the y-component on the
other dashed line. This is owed to the fact of an off-axis
vortex which requires a coordinate transformation for fur-
ther investigation. Here, we concentrate on an qualitative
considerations.

Experimental results
Figure 8 depicts the experimental results obtained with
an helium-neon laser at . = 632.8 nm. The experimental

setup is presented in Fig. 7. The structured spiral axicon
with N = 6 blades has an radial period r, = 32um
and a diameter Dy = 960 um. The measured intensity
distribution at z = 18 mm can be seen in Fig. 8a show-
ing one intensity maximum in donut shape in the center
(on-axis) and six maxima in donut shape arranged sym-
metrically around the on-axis maximum . The transversal
intensity distribution was 20x magnified. The pixel size
of the CCD camera was 4.75 um x 4.75 um. The corre-
sponding wavefront measurement, obtained with a Shack-
Hartmann-sensor, can be seen in Fig. 8b and c for the
on-axis and off-axis vortex, respectively.

The Shack-Hartmann sensor used in the measurement
has a pitch of 130 um. In order to resolve the wavefront

HeNe laser

pinhole discretized
I spiral axicon
mirror —
objective I objective
lens achromat lense achromat

Fig. 7 Experimental set up

CCD-Camera /
SH sensor
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Fig. 8 Measurement of the discretized spiral axicon with

N = 6,rp = 32 um, aperture diameter Do = 960 um at z = 18 mm
illuminated by a helium-neon laser with A = 632.8 nm and 5mwW
power (a) intensity distribution with CCD-camera (4.75 um x 4.75 um
pixel) with 20x magnification; measured spot deviation obtained
with a Shack-Hartmann sensor and 50x magnification of (b) on-axis
and (c) off-axis vortex. Note, that the arrows representing the spot
displacement are stretched by the same factor for a better overview
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of the vortices, a sufficient magnification had to be used.
In our experiments, this magnification was 50x to yield a
donut diameter on the sensor camera about 1.5 mm.

The vector fields shown in Fig. 8b and ¢ demonstrate
the isotropic character of the on-axis vortex and the
anisotropy of the off-axis vortex, respectively. Both are in
agreement with Fig. 6. We would like to explain the asym-
metric behaviour of the off-axis vortices in more detail
with a qualitative and geometrical evaluation of the exper-
imental data. The resulting phase gradient can easily be
calculated from the measured spot displacement shown in
Fig. 9.

The axes shown here (continuous and dashed lines) are
used to demonstrate the same behavior of the phase gra-
dient for the on- and off-axis situation. By comparison
with the calculated results shown in Fig. 6, on can observe
that the experimental distribution in Fig. 9 match the
predictions.

Conclusion

We have discussed and demonstrated the use of dis-
cretization as a design tool for the generation of com-
plex vortex fields. Theory was described for the general
case, and experimental results have been presented for
a specific example of a six-pronged element where both,
radial and azimuthal coordinate, were discretized. As a
result, we obtained a non-diffracting optical vortex lat-
tice in the near-field region. The positions of the SDs are
fixed along propagation. The longitudinal phase gradient
exhibits no azimuthal dependencies. Further examination

25

35 4 45 5 55
X [mm]

Fig. 9 Calculated phase gradients from spot displacement in Cartesian coordinates at z = 18 mm: (left column) or (a)+(c)
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have revealed the characteristics of the on- and off-axis
vortices. The on-axis vortex shows isotropic character-
istics near the vortex middle point, whereas the off-axis
vortices, which are arranged symmetrically around the
on-axis vortex, involve an anisotropic phase distribution.
The resulting field distribution can be seen as super-
position of different non-diffracting fundamental vortex
modes. In addition to the theoretical analysis, we have
shown several experimental results obtained with litho-
graphically fabricated diffractive elements. In particular,
we would like to emphasize the measurements of the
phase gradients which were carried out with a Shack-
Hartmann sensor. The SHS has proven to be a practical
tool for this purpose, yielding quantitative results which
can be further analyzed. Theoretical and experimental
results are in good agreement.
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Vertical-cavity surface-emitting laser
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