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Abstract

Background: Optical information encryption technology has received extensive attention from researchers in recent
years because of its advantages of parallel and high-speed processing capability, as well as the controllability of phase
components.

Methods: An encryption method for grayscale images with a pair of random phase masks based on gamma
distribution in the gyrator domain is proposed. In this scheme, two random distribution phase-images using
random parameters according to the definition of the gamma probability distribution function are generated.
They are loaded onto spatial light modulators as random phase masks used in the encryption process. The
input grayscale image transmitted through the first random phase mask. And then they are encoded by the
first gyrator transform. The resulting information is again encrypted by a second gamma distribution random
phase mask at the gyrator frequency plane. The final results are encoded by the second gyrator transform.

Results: Numerical simulations are presented to confirm the security, validity, and flexibility of the proposed

analysis establish the scheme’s robustness.

RPMs.

idea. The gyrator transform rotation angle sensitivity test is also simulated. The occlusion and noise attacks

Conclusions: In gyrator transform-based optical image encryption cipher system, encrypting the input image
with different parameters of gamma distribution RPMs will significantly change the statistical distribution of
phase in the ciphertext. It means that the phase distribution in the ciphertext will not obey the law of
random scattering medium. Therefore, it has potential to resist the attack based on the phase retrieval
algorithm. Therefore, the security and flexibility of encryption can be improved by using gamma distribution

Keywords: Optical encryption, Gyrator transform, Random phase mask, Gamma distribution

Introduction

Optical information encryption technology has received
extensive attention from researchers in recent years
because of its advantages of parallel and high-speed
processing capability, as well as the controllability of
phase components. One of the earliest and most widely
studied optical encryption method for image encryption
was the double random phase encoding (DRPE) system
which was proposed by Refregier and Javidi [1-5]. This
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architecture is based on a 4-f imaging system and to-
gether with a pair of independent random phase keys
(PRKs), which one in the input plane and another in
the Fourier plane for encryption amplitude image. After
more than 20years of development, the family of op-
tical information encryption systems has been greatly
expanded. They provide many degrees of freedom with
which optical beam may be encoded, including ampli-
tude, phase, wavelength, and polarization. Now, there
are still many examples showing that optical security
and encoding techniques have continued to attract the
attention of researchers [6-8].
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A number of optical encryption methods have been pro-
posed, based on the conventional DRPE configuration, to
further enlarge the key space of the encryption system by
extending it to the fractional Fourier transform (FrFT) do-
main [9-11], Hartley transform domain [12, 13], Fresnel
domain [14-16] and wavelet domain [17, 18] et al. The
gyrator transform (GT) belongs to the linear canonical
integral transform and corresponds to the rotations in the
twisted position-spatial frequency planes of phase space
[19, 20]. This scheme is flexible and easy to implement
through an optoelectronic system. Therefore, many im-
proved solutions have been proposed for color image [21—
25], multiple images [26—30], and watermarking [31], etc.

For security enhancement, another alternative is to use
structured phase key (SPK) in the encryption-decryption
process instead of white-noised RPK. Several kinds of
SPK have been constructed, such as fractal zone mask
[32], linear phase mask [33], toroidal zone mask [34—
36], spiral phase mask [37-44], etc. All these SPKs have
shown significant simplicity and robustness to meet the
requirements of high flexibility and safety. They have
been applied to different domains mentioned above.

In this paper, an image encryption and decryption based
on DRPE and gamma distribution phase masks in GT
domain is introduced. In this scheme, two random distribu-
tion phase-images are generated using random parameters
according to the definition of the gamma probability distri-
bution function. They are loaded onto spatial light modula-
tors (SLMs) as RPKs used in encryption process. A
grayscale image is encrypted with a first RPK placed at the
input plane and then performed the first GT. The resulting
spectrum is again encrypted into second RPK placed at the
GT spectrum plane and then executed the second GT. The
construction parameters of RPKs and rotation angles of GT
are introduced for encryption. Therefore, the security and
flexibility of the DRPE system are enhanced.

The paper is organized as follows: In Section 2, we
present a brief mathematical description of GT, gamma dis-
tribution, and the encryption scheme. In Section 3, we
present the results based on computer simulations for val-
idation and evaluation of the scheme’s performance. Finally,
the conclusions of the study are summarized in Section 4.

Methods

Gyrator transform

The GT is a linear canonical integral transform and similar
to the FrFT. It produces rotation in the twisted position
spatial frequency planes. For a two-dimensional function
flx,y), the GT with rotation angle ¢ is written as

G(u, v)2G {f (x,9)} (,v) :

= [f(xy) - Koy v)dudy

where the kernel is defined as
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(xy 4+ uv) cos-xv-yu
siné '

Ke(x,y;u,v) exp | 2im

1
| siné|
(2)

Here, (4,v) and (&, v) are the coordinates on the input
and output plane. G(u,v) is the output of the GT. GT has
the following special properties: The properties of the GT
are summarized as follows: (1) When =0, it corresponds
to the identity transform. (2) For {= + /2, the GT re-
duces to a FT/inverse FT with a rotation of the coordi-
nates at 77/2. (3) The inverse transform of G° is expressed
as G or G¥"~¢. (4) The GT is periodic with 27 and addi-
tive with respect to rotation angle, G*' G*> = G2, The
GT can be implemented by an optimized flexible optical
system having planoconvex cylindrical lenses with a fixed
distance between them. The angle ¢ is changed by proper
rotation of two lenses. The digital GT can be implemented
with two-dimensional discrete fast Fourier transform.

Gamma distribution

In probability theory and statistics, the gamma distribu-
tion is a two-parameter family of continuous probability
distributions. The exponential distribution, Erlang distri-
bution, and chi-squared distribution are special cases of
the gamma distribution with different parameters [45].
A random variable X that is gamma distribution with
shape parameter a and rate parameter /5 is denoted

X~T(a, B)2gammal(a, B). (3)

The corresponding probability density function (PDF)
in the shape-rate parameterization is

/))0! xo-1 e—ﬁx

f(X;(X,ﬁ) =TT N

where X >0, a, >0 and I'(a) is the upper incomplete
gamma function. The upper incomplete gamma function
is defined as

F(s):/ £ letdt, (5)
0

The formula for the gamma cumulative probability
function (CDF) is

F(X;a,p) = r@pX)

where y(a, fX) is the lower incomplete gamma function
which is defined as

y(s,x) = /Ox e tde. (7)

If X is I'(a, ) random variable and the shape param-
eter «a is large relative to the scale parameter 1/f, then X
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approximately has a normal random variable with mean
u = a/p and variance o> = a/p”. Figure 1 is the plot of the
gamma PDF for different pairs of parameters (a, 5). We
also define a linear function to map the value of a ran-
dom variable to the corresponding interval, as follows

X' =aX +b. (8)
where a is referred to as the slope of the line, and b as
the intercept.

Encryption setup

An optoelectronic hybrid setup of the proposed method is
depicted in Fig. 2. In this scheme, the GT optical setup is
constructed by using three generalized lenses with fixed
distances between them. The left dotted block consists of
lenses Ly, L, and L; denotes the first optical GT and the
right one consists of lenses L, L), and L) represents the
second optical GT. The spatial distribution of pixel value
of the original image is changed digitally by the first
discrete Fourier transform (DFT), attached to a gamma
distribution random phase mask (RPM1), displayed on the
first SLM in the input plane, and then optically trans-
formed by the first GT. The spatial distribution of pixel
value of the transformed image is changed digitally by the
second DFT, attached to another gamma distribution
RPM2, displayed on the second SLM in GT plane, and
then optically transformed by the second GT. The
encrypted complex amplitude is superimposed on the
plane reference beam to produce a holographic interfer-
ence fringe, which is captured and recorded as an off-axis
hologram by charged couple device (CCD) camera, and
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digitally processed by a computer system. The encrypted
complex amplitude function can be expressed as

E(,y) =G {G" {I(x,y) - expligy (x,9)]} - expligy(u, )]},

©)

where ¢;(x,7) and ¢,(x,y) are the phase functions with
gamma probability distribution. ¢; and &, are rotation
angles for the first and second GT. The decryption sys-
tem has the same structure as the encryption system but
uses a conjugated RPM. For real number input, the
decrypted image is obtained by a reverse of the encryp-
tion process with GT at the rotation —¢;, —&, and conju-
gation of the second RPM. In this scheme, the alignment
accuracy is limited by the pixel size of 20um and thus a
large space-bandwidth product is obtained [21].

Results and discussion

Numerical simulations have been performed on a
Matlab R2016a. A pepper image having 512 x 512 pixels
and 8bits gray levels is regarded as an original image as
shown in Fig. 3.

In the first case, the gamma distribution parameters
are =2 and =1 for RPM1 and RPM2. In order to
limit most of the phase values within the required range,
according to Eq. (8), the linear transformation parame-
ters are set to (a,b) = (1,1) for RPM1 and (a, b) = (2,0)
for RPM2. The amplitude part and phase part of the
encrypted result with these parameters are displayed in
Fig. 4a, b, respectively. The corresponding histograms
are shown in Fig. 4c, d. The patterns of the RPMs are
displayed in Fig. 4e, f. The transformation angle of the
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Fig. 1 Gamma PDF for different pairs of parameters (a, 8)
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Fig. 2 Optoelectronic hybrid architecture of the proposed system

first and second GTs are both 7z/4. The decrypted image
with all correct keys is illustrated in Fig. 4g. For com-
parison, a second case is induced. A pair of uniform dis-
tribution RPMs were employed to the pepper image in
GT encryption system. In this scenario, the rotation
angles of GTs are &; =&, =m/4. The corresponding en-
cryption results, histograms and phase key distributions
are shown in Fig. 5a-g. According to the results of hy-
pothesis testing, under the case of a 95% confidence
level, the encrypted amplitude images of both uniform
and gamma distribution RPM schemes obey the Rayleigh
distribution which are depicted in Figs. 4c and 5c. How-
ever, the probability distributions of encrypted phase
images are significant different between two schemes. In
the uniform RPM scheme, phase probability distribution
obeys uniform distribution. In this case, it obeys the
phase distribution model of random scattering medium.

Fig. 3 Original grayscale image “pepper” with 512 x 512 pixels used
in the numerical simulation

However, in the gamma RPM scheme, phase probability
distribution does not follow uniform distribution, Gauss-
ian distribution or Rayleigh distribution, according to
the results of hypothesis testing. And output phase dis-
tribution depends on the parameter selection of gamma
PDF. In fact, the proposed method is a more general
way of configuring RPMs. The introduction of random
distribution parameters and linear functions makes this
method more flexible. On the other hand, it means that
the phase distribution in the ciphertext has broken the
scattering law of the random medium. It has potential to
obstruct phase retrieval algorithm which is based on the
hypothesis of uniform distribution of phase in the
ciphertext.

To evaluate the performance of the proposed method
quantitatively, there are several statistical indicators are
introduced. The mean square error (MSE) and the peak
signal-to-noise ratio (PSNR) are defined as

(10)

I(x,9)-1(x.9)| |2

R2
PSNR = 10 log, (—) (11)

MSE

where I,(x,y) and I(x,y) are original and encrypted/
decrypted image respectively. M x N represents the
pixels size of the image and R =255 is the maximum
fluctuation in the input data type. The value of MSE rep-
resents the difference between input and output images
at the aspect of pixel data. The quality of the decrypted
result is also addressed by illustrating a retrieved image
in order to assist the MSE function in vision. The
decrypted result with all correct keys has the minimum
of MSE which is very close to zero. The MSE values be-
tween the input image and its corresponding encrypted
image is 6.1073 x 10®°whereas the PSNR value is 10.2723.
At the same time, the MSE value between the input
image and its decrypted image with all correct keys is
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Fig. 4 Results of proposed image encryption and decryption: a Encrypted amplitude image; b Encrypted phase image; ¢ histogram of encrypted
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4.2097 x 10™%7 while the PSNR value is 311.8883. These
results reveal that the original image is totally encrypted
into a noise-like image and which can be reconstructed
with all right key.

Further, the MSE curves between the input and their
corresponding recovered images are plotted as a func-
tion of transform angles of GT1 and GT2 in gamma
distribution RPM scheme and uniform RPM scheme,
respectively in Figs. 6 and 7. In both the plots, MSE
approaches zero when the images are decrypted with
correct transform angles, whereas it increases sharply
in case of a departure from the correct angles. The
MSE curve of the rotation angle is not sensitive to differ-
ent RPM probability models, which can be seen from the
comparison results in Figs. 6 and 7. They are regarded as
two sets of relatively independent encryption parameters.

The results also show that the GT scheme is very sensitive
to the variations in GT angles.

Additionally, we examine the robustness of the pro-
posed algorithm against occlusion and noise attacks.
In this test, the gamma distribution parameters are
(a,B) =(2,1) for both of RPMs. And the linear trans-
formation parameters are set to (a,b)=(1,1) for
RPM1 and (a,b)=(2,0) for RPM2. The encrypted
amplitude and phase images are occluded from 20% to
80% sizes which are shown in Fig. 8a-h. The occluded
pixels are replaced by zero in this test. And corre-
sponding recovered images are displayed in Fig. 8i-],
respectively. The calculated MSE values between input
and its corresponding retrieved images with all the
right keys from the encrypted image with 20%, 40%,
60%, 80% occlusions are 1.1310x 10°, 3.2962 x 10°,

all the correct keys

Fig. 5 Comparison results of image encryption and decryption: a Encrypted amplitude image; b Encrypted phase image; ¢ histogram of encrypted
amplitude; d histogram of encrypted phase; e first uniform distribution RPM; f second uniform distribution RPM; g decrypted image with
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Fig. 8 The robustness test of the proposed method against occlusion attack on the encrypted image. a, b, ¢, d encrypted amplitude images with
20%, 40%, 60% and 80% occlusion; e, f, g, h encrypted phase images with 20%, 40%, 60% and 80% occlusion; i, j, k, | corresponding reconstructed

MSE: 7.3289x10°
PSNR: 9.4804

MSE: 4.5666x10°
PSNR: 11.5349

4.5666 x 10> and 7.3289 x 10%, respectively. The calcu-
lated PSNR values between input and its correspond-
ing retrieved images with all the right keys from the
encrypted image with 20%, 40%, 60%, 80% occlusions
are 17.5961, 12.5906, 11.5349 and 9.4804, respectively.
In the cases of 20% and 40% occluded encrypted im-
ages, their respective decrypted images with all right
keys can be recognized obviously. However, the
decrypted images with all correct keys from 60% and 80%
occluded encrypted images, are not easily recognizable be-
cause of data loss. The proposed system shows robustness
against occlusion attacks.

At the aspect of robustness analysis, the encrypted
image will be checked by noise attack. The additive noise
model is expressed as follow,

E'(x,5) = E(5,9) |1+ PN, 2 (3,9)] (12)
where E(x,7) and E (x,y) represent the ciphertexts before
and after adding noise. Besides, the parameter p can be
regarded as a coefficient representing noise intensity.
N, (x,y) denotes Gaussian random data with the mean
value ¢ and variance o”.

In this test, the encrypted amplitude and phase images
are added Gaussian noise with different parameters. All

the relevant encryption parameters are the same as in
the occlusion test. The results are shown in Fig. 9a-l
From left to right columns, the noise parameters are
(1, 0%) = (0.5,0,05), (p, ,0°) = (1,0,0.5), (v, 4, 0°) = (0.5,
0,2) and (p, 4, o) = (1,0, 2), respectively. The MSE values
from left to right each columns are 0.5236 x 10°, 1.8422 x
10%, 4.7273 x 10* and 6.5206 x 10%, respectively. The cor-
responding PSNR values from left to right columns are
20.9408, 15.4775, 11.3847 and 9.9879. In the first three
cases, the original image is retrieved and recognized. The
quality of the retrieval image is sensitive to the encrypted
phase image. The proposed system has robustness against
noise attacks.

Conclusions

We have proposed an encryption scheme for grayscale
images with a pair of random phase masks based on
gamma distribution in the gyrator domain. The gamma
distribution phase mask is preferred over the uniform
distribution phase mask in order to introduce parame-
ters that enlarge the key space. In addition to enhancing
the system security, the use of gamma distribution RPM
also helps in the flexibility of encryption. More import-
antly, the encrypted image with different parameters of
gamma distribution RPMs will have different statistical
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MSE: 1.8422x10°
PSNR: 15.4775

PSNR: 20.9408

\

MSE: 6.5206x10°
PSNR: 9.9879

MSE: 4.7273x10°
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Fig. 9 Robustness test of the proposed method against Gaussian noise attack. a, b, ¢, d Gaussian-noised encrypted amplitude images with
different parameters; e, f, g, h Gaussian-noised encrypted phase images with different parameters; i, j, k, | retrieved images with all the correct
keys from encrypted amplitude and phase images from (a, e), (b, f), (c, g) and (d, h)

distribution of phase in the ciphertext. It means that the
phase distribution in the ciphertext will not obey the law
of random scattering medium. Therefore, it has potential
to resist the attack based on the phase retrieval algo-
rithm. The scheme has been validated and its efficacy
has been quantitatively evaluated from the computed
values of MSE between input and decrypted images. The
amplitude and phase pattern distribution of the
encrypted image varies with the gamma distribution pa-
rameters. We have also examined the scheme’s sensitiv-
ity for GT transform orders. Numerical simulations
confirm that the scheme is flexible for different gamma
distribution parameters. The occlusion and noise attacks
analysis establish the scheme’s robustness.

Abbreviations
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DFT: Discrete Fourier transform; DRPE: Double random phase encoding;
FrFT: Fractional Fourier transform; FT: Fourier transform; GT: Gyrator
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PSNR: Peak signal-to-noise ratio; RPK: Random phase key; RPM: Random
phase mask; SLM: Spatial light modulator; SPK: Structured phase key
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