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Abstract

Background: Determining the relative ubiety between the camera and the laser projector in a line-structured light
vision sensor is a classical yet important task. Typical calibration methods often confront problems, such as difficulty
of producing the target precisely and introduction of perspective projection errors.

Methods: In this work, a new calibration method based on a concentric circle feature is introduced. The proposed
method is based on geometrical properties and can reduce the perspective projection error. In our method, the
vanishing line of the light plane is firstly deduced from the imaged concentric circles. Then the normal vector of
the light plane is determined. Consequently, the complete expression can be confirmed from the principle of the
intersecting planes.

Results and conclusion: The proposed method is simple and robustness as the basic theory is geometrical
properties. Accuracy evaluation experiment shows that the accuracy of the calibration method can reach 0.07 mm
within the view field of about 200 × 200 mm. This accuracy is comparable to the commonly used calibration
method with a checkerboard planar target, whereas our target is simple to produce.
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Background
The Line-Structured Light Vision Sensor (LSLVS) plays
an important role in the field of industry measurement
owing to its wide measurement range, high precision,
real-time ability, simple information extracting, and so
forth [1, 2]. The typical structure consists of one camera
and one laser projector. Estimation of the relationship
between the camera and the laser projector, which is
called as calibration of LSLVS, is one of the most import-
ant tasks.
Heretofore, there are many calibration methods. Accord-

ing to ways of obtaining feature points on the structured
light plane, these methods can be classified into three
categories: three-dimensional (3-D) target method [3, 4],
planar target (2-D) method [5–7], and one-dimensional
(1-D) target method [8–13].

The 3D target method is based on the invariance of
double cross-ratio. With a special calibration 3D target,
enough non-collinear feature points on the structured
light plane can be determined based on the theory of the
invariance of double cross-ratio. Afterwards, relative ubi-
ety between the camera and the structured light plane
projector is confirmed. Different planar targets with
different features are used according to different theor-
ies. In Ref. [10], a planar target that contains a pattern of
squares is utilized to finish the calibration of LSLVS. The
intersection points of the light stripe and calibration
squares with exactly known size can be obtained under
the image coordinate system (ICS). Accordingly, feature
points on the structured light plane can be gained based
on the invariance of cross-ratio. A 1-D target method is
proposed owing to its convenient operation. The feature
point, namely the intersection point of the light stripe
and a 1D target, can be determined based on the invari-
ance of cross-ratio. Therefore, enough feature points can
be obtained from the random movements of the 1D tar-
get to different positions.
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Unfortunately, the 3D target based method is not well
suited for on-site calibration as there will be some inevit-
able problems, e.g., mutual occlusion between different
planes of the target, the difficulty of producing the target
precisely, the cumbersomeness of the target, etc. In the
1D target based method, few feature points are obtained
and the calibration result is not precise enough. In com-
parison, the planar target-based method is with easy oper-
ation and satisfactory results but perspective projection
error is inevitable.
In this paper, a planar target with a pattern of two (or

more) concentric circles is utilized to finish the calibra-
tion of LSLVS. In our calibraiton algorithm, the vanish-
ing line of the light plane is deduced from imaged
circles, then normal vector of the light plane is con-
firmed. The complete expression can be confirmed from
the intersecting planes under a camera coordinate sys-
tem. In the application, we evaluate our algorithms and
accurate results are achieved. The contribution of our
paper is that we initiate a new method based on a con-
centric circles feature to calibrate LSLVS. The algorithm
can reduce the perspective deviation with a satisfying re-
sult. Moreover, the planar target used in our method is
easy to make precisely, and meanwhile, the proposed
method is efficient and convenient, especially for onsite
calibration.

Measurement model
The location relationship between the camera in
LSLVS and the structured-light plane projector re-
mains unchangeable in the process of calibration and
measurement. So the structured-light plane can be
expressed as a fixed function, which is defined as
Eq.(1) under camera coordinate system.
Consider.

AL;BL;CL;DL½ � X;Y ;Z; 1½ �T ¼ 0 ð1Þ

where AL, BL, CL, DL are parameters of the structured--
light plane’s expression. The measurement model of
LSLVS is illustrated in Fig. 1. O-XYZ is the Camera
Coordinate System (CCS) while o-xy is the Image Co-
ordinate System (ICS). Under CCS, the center of pro-
jection of the camera is at the origin and the optical
axis points in the positive Z direction. A spatial point
P is projected onto the plane with Z = f0, referred to
as the image plane under the CCS, where f0 is the ef-
fective focal length (EFL). Supposing p = (x, y, 1)T is
the projection of P = (X,Y, Z)T on the image plane.
Under the idealized pinhole imaging model, the ideal

model of the camera, P, p and the center of projection O
are collinear. The fact can be expressed by the following
equation:
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Practically, the radial distortion and the tangential dis-
tortion of the lens are inevitable. When considering the
radial distortion, we have the following equations:

x ¼ x 1þ k1r
2 þ k2r

4
� �

y ¼ y 1þ k1r
2 þ k2r

4
� �

�
ð3Þ

where r2 = x2 + y2, (x, y)T is the distorted image coordin-

ate, and ðx;yÞT is the idealized one, k1, k2 are the radial
distortion coefficients of the lens.

Properties of concentric circles
For the purpose of easy description, we define a world
coordinate system, the XY plane of which is the target
plane. In this case, the z-axis of the world coordinate
system (WCS) is perpendicular to the target plane (as il-
lustrated in Fig. 2). Also, we define the O-XY of WCS on
the target plane as the target plane coordinate system
(TCS). Define C1 and C2 as two concentric circles, and
their circle center is O. Their corresponding images are
C1, C2 and o.
Without loss of generality, define the homogenous

representation of the circles center as [x0, y0, 1]
T under

TCS and the radii as r1 and r2. So the matrix representa-
tion of C1 is.

C1 ¼
1 0 −x0
0 1 −y0
−x0 −y0 x20 þ y20−r

2
1

2
4

3
5 ð4Þ

while the representation of C2 is.

Fig. 1 Measurement model of LSLVS
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1 0 −x0
0 1 −y0
−x0 −y0 x20 þ y20−r
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5 ð5Þ

The TCS is not unique when the concentric circles are
described as Eq.(4) and Eq.(5). Under any one coordinate
system whose origin coincides with the center of these
concentric circles, expressions of these concentric circles
are the same.
Define the homography matrix from the image plane to

the target plane where concentric circles locates in as H.
The matrix experiment of a circle can be expressed as.

pTCp ¼ 0: ð6Þ
Where p is the homography expression of the point lo-

cated on the circle.
So we have.

p1
TC1p1 ¼ 0

p01
TC

0
1p

0
1 ¼ 0

�
ð7Þ

As p
0
1 ¼ Hp1, Eq.(7) can be rewritten as.

p1
TC1p1 ¼ 0

p1
THTC

0
1Hp1 ¼ 0

�
ð8Þ

The the realtion between C1 and C
0
1 is obtained:

C1 ¼ HTC
0
1H ð9Þ

So we have.

C
0
1 ¼ H−TC1H
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�
ð10Þ

Then.
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H ‐1 ð11Þ
The eigen-decomposition can be expressed as.

V ;D½ � ¼ eig C2;C1ð Þ ð12Þ

where V ¼
1 0 x0
0 1 y0
0 0 1
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From matrix D, we find that C
0−1
2 C

0
1 has three eigen-

values, of which two are identical and one is different.
From matrix V, we find that the corresponding eigenvec-
tors of the identical eigenvalues are [1 0 0]T, [0 1 0]T,
which are points on the infinity line. We also find the
corresponding eigenvector of the different eigenvalue is
[x0 y0 1]

T, which is the circle center. Based on the above
analysis, we can conclude that the circle center and the
line at infinity can be recovered by the eigenvectors of
the matrix C−1

2 C1 [14].
Eq.(11) is rewritten as.

C
0−1
2 C

0
1H ¼ HC−1

2 C1 ð13Þ

As the world coordinate system can be defined freely,
the concentric circles can be expressed as Eq.(4) and
Eq.(5). Eq.(13) is the form of AX = XB, which is widely
used in robot hand-eye calibration [15]. The general so-
lutions of Eq.(8) can be calculated easily. One solution is
corresponding to one coordinate system (TCS). So any
one of the solutions can be chosen, then the matrix H
transformed from the image plane to the target plane
(under TCS) can be confirmed.

Calibration
In our method, a planar target with two concentric
circles is designed to finish the calibration. As is
known, the projection of a circle on a plane is an el-
lipse (as illustrated in Fig. 3), which can be expressed
as [16, 17].

(a) (b)
Fig. 2 (a) Relative position of Concentric circles and (b) its relative coordinate system
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As described in Eq.(11), matrix C−1
2 C1 is similar

with the matrix C
0−1
2 C

0
1 , defining the eigenpair of C−1

2

C1 as (λ, x). According to the property of similarity

transformation, the eigenpair of C
0−1
2 C

0
1 is (λ, Hx). As

is known, the vanishing point is the image of the in-
finity point and the vanishing point must be located
on the vanishing line, which is the image of the infin-
ity line. When projections of the two concentric cir-

cles (C
0
1 and C

0
2 ) are determined, the image circle

center and the vanishing line of the target plane can
be deduced from their eigenvectors.

Clearly, the light stripe locates on the target plane. As
one plane has only one vanishing line, the intersection
point of the vanishing line of the target plane and the
light stripe is a vanishing point of the light plane. So
when we place the target in different positions, more
vanishing points will be obtained. Then the vanishing
line of the light plane is confirmed (as illustrated in
Fig. 4). In Fig. 4, LT is the vanishing line of the target
plane. Pn is the vanishing point of the target plane and
the light plane. Ll is the vanishing line of the light plane.
The vanishing line and its corresponding plane can be

related by the following equation.

l ¼ K−T n! ð15Þ
where K is the intrinsic parameter matrix of the camera,
n! is the normal vector of the corresponding plane and l
is the homogeneous coordinate of the vanishing line.
Based on Eq.(15), the normal vector of the light plane
can be deduced from its vanishing line [18].

n!¼ KT l ð16Þ
when we obtain the homography matrix from image
plane to the target plane, the rotation matrix and the
translation matrix from the camera coordinate system to
the world coordinate system can be decomposed from
the homography matrix. The light stripe is similarly lo-
cated on the light plane, the target plane and its back
projection plane under CCS. When we define the target
plane as.

AP;BP;CP;DP½ � X;Y ;Z; 1½ �T ¼ 0 ð17Þ
And the back projection plane is.

AJ ;BJ ;C J ;DJ½ � X;Y ;Z; 1½ �T ¼ 0 ð18Þ
Then the series of planes crossing the light stripe on

the target can be expressed as.

Fig. 3 Projection of circle on image plane

Fig. 4 The interrelationship between vanishing line and vanishing points in different positions
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AP þ kAJ ;BP þ kBJ ;CP þ kC J ;DP þ kDJ½ � X;Y ;Z; 1½ �T ¼ 0

ð19Þ

Eq.(19), k is a scale factor. As the normal vector of the
light plane crossing the plane stripe is known, the param-
eter DL can be easily be confrimed from Eq.(19) and Eq.(1).
Briefly, the calibration procedure is given as follow:

Step 1: Extract concentric circles images C
0
1 and C

0
2.

Step 2: Calculate the eigenvectors of C
0−1
2 C

0
2 , then the

vanishing line and the imaged circle center can be
confirmed.
Step 3: Confirm the normal vector of the light plane

from its vanishing line.

Step 4: Confirm the homography matrix from the
target plane to the image plane. Then the rotation
matrix and translation matrix from the world coord-
inate system to the camera coordinate system is
deduced.
Step 5: The back projection plane can be confirmed

based on the light strip on the target plane.
Step 6: Parameter DL which is defined in Eq.(1) can be

confirmed from Eq.(19).

Simulation
In our computer simulations, we assumed the simulated
camera has been calibrated, i.e. the intrinsic parameters
are known: the focal lengthf = 1200, the scale factor in

Fig. 5 (a) Error of the normal vector as a function of the standard deviation of additive Gaussian noise, (b) Error of parameter D as a function of
the standard deviation of additive Gaussian noise

Fig. 6 (a) Error of normal vector as a function of the standard deviation of the Gaussian noise when three concentric circles is used, (b) Error of
parameter D as a function of the standard deviation of the Gaussian noise when three concentric circles is used
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the x-coordinate direction (fx) is equal to the scale factor
in the y-coordinate direction (fy), i.e. fx = fy = 1200, the
principal point(u0, v0) = (400, 300). The expression of the
light plane under the camera coordinate system is.

1:2; 2:2; 3:6; 4:9½ � X;Y ;Z; 1½ �T ¼ 0 ð20Þ

The pattern on the plane target contains two concentric
circles with a radius of 25mm and 20mm respectively.

Influence of image noise on calibration accuracy
In our simulations, the target is moved to 5 different po-
sitions. 200 feature points on each circle image are
chosen to fit the ellipse and the least squares ellipse fit-
ting algorithm is utilized. The light strip is fitted by 30
image points. Gaussian noise with standard deviations
varying from 0 to 1.0 pixels is added to both coordinates
of the image points to generate the perturbed image
points.
In the proposed algorithm, normal vector of the

light plane is obtained from its vanishing line and the
parameter DL is deduced from the back projection
plane. Errors of the normal vector and the parameter
D of the structured light plane are illustrated in Fig. 5.
The root mean square error (RMS) and the mean
absoulte error (MAE) are illustrated. Errors illustrated
in Fig. 5(a) are soloved from the intersection angle of
two nornal vectors, the idealized light plane’s and the
perturbed one’s. Similarly, errors illustrated in Fig.
5(b) are difference from idealized parameter DL and
the calculated one.
Each point in Fig. 5 represents result averaged 200

uniformly distributed rotations. From Fig. 5, we can

see that errors increase over the noise level, includ-
ing root mean square error and mean absoulte
error.

Influence of circle number on calibration accuracy
We generalize our results to three concentric circles and
four concentric circles. In this experiment, we choose
200 points to fit the ellipse and also place the target to 5
different positions. Calibration results are illustrated in
Fig. 6 and Fig. 7. The related notations are the same as
mentioned in Fig. 5.
As illustrated in Fig. 6 and Fig. 7, the calibration result

is better as the number of concentric circles increases.
When more concentric circles are used, the vanishing

Fig. 7 (a)Error of normal vector as a function of the standard deviation of the Gaussian noise when four concentric circles is used, (b) Error of
parameter D as a function of the standard deviation of the Gaussian noise when four concentric circles is used

Fig. 8 Structure of experiment system
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line and the homography matrix have a precise result. In
this case, calibration result is more accuracy.

Results and discussion
Camera calibration
In the real scene experiment, the camera used to cap-
ture the image is AVT F-504B with a resolution of
2452 × 2056 pixels and the view field is about 200 ×
200 mm (as illustrated in Fig. 8). The laser projector
is a line laser. A planar target with two concentric
circles is made and the radii of the two circles are 50
mm and 70 mm respectively. Its machining accuracy
is 0.01 mm.
The camera can be calibrated by Zhang’s calibration

method [19, 20] or Huang’s calibration method [16].
Based on Huang’s calibration method, intrinsic pa-
rameters can be obtained simultaneously when we
finish the calibration of LSLVS using our target. In
our experiment, we calibrate the camera by Zhang’s
method. The checkerboard-pattern target is produced
with accuracy of 10 μm. Captured images are illus-
trated in Fig. 9 and the intrinsic parameters are listed
in Table 1.
In Table 1, fx is the scale factor in the x-coordinate

direction, fy is the scale factor in the y-coordinate
direction, (u0, v0)

T is the coordinates of the principal
point. k1 and k2 are the distortion coefficients of
lens.

Sensor calibration
A planar target with two concentric circles is used
to calibrate LSLVS, and the radii of the two circles
are 50 mm and 70 mm respectively. Its produced ac-
curacy is 0.01 mm. The target is placed to 5 different
positions. We first compensated for camera distor-
tion by rectifying all real images, and then the image
of concentric circles is extracted [21] in sub-pixel
precision, which is illustrated in Fig. 10.

Fig. 9 Images used for the calibration of intrinsic parameters in different positions (a-f)

Table 1 Intrinsic parameters of the camera

fx fy u0 v0 k1 k2

5124.211 5125.933 1271.232 1047.570 −0.224 −0.473
Fig. 10 Extraction of imaged concentric circles in four different
positions (a-d)
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LSLVS is calibrated by the method mentioned above
respectively. Function of the structured light plane under
camera coordinate system is expressed as.

xþ 0:013yþ 0:390z−518:151 ¼ 0 ð21Þ
Moreover, we used a target with three concentric cir-

cles to finish the calibration task. The extraction of im-
aged concentric circles are illustrated in Fig. 11.
Function of the structured light plane under camera

coordinate system is expressed as.

xþ 0:012yþ 0:381z−515:237 ¼ 0 ð22Þ

Accuracy evaluation
A planar checkerboard-pattern target is used to evaluate
the accuracy of the proposed calibration method. As the

side length of each checkerboard is known exactly, the
coordinate of the feature points under TCS can be
solved based on the invariance of cross-ratio. The theory
is descirbed as follows:
The grid pitch of the target is known accurately as l

while the length of AD can be defined as l0 (see Fig. 12).
Based on the invariance of cross-ratio, the following
equation can be obtained:

AB=BD
AC=DC

¼ 2l= 2l−l0ð Þ
3l= 3l−l0ð Þ ð23Þ

The real length of AD can be solved, so can A1D1.
Then the distance between point D and point D1 can be
worked out, i.e. the distance between each of the adja-
cent feature points (dTru) can be obtained, which can be
treated as the true value owing to its high accuracy.
All measurement values (dMea) are compared with

their corresponding true value. As the target can be
moved into different positions randomly, we can obtain
enough distances to evaluate our calibration result, ten
of which are listed in Table 2.
In Table 2, dTru denotes the real distance between

two feature points, while dMea is the measurement re-
sult based on the calibration result using the proposed
method. As listed in Table 2, the root mean square error
of the calibration result (RMS) obtained by our pro-
posed method is 0.072 mm. The calibration results are
precise enough as two concentric circles are used and
the target is just placed to four different positions.

Comparisons & Discussions
There are many calibration methods for line structure
light vision sensor. Three methods with different targets
are concisely described as follows:

Fig. 11 Extraction of imaged concentric circles in four different
positions (a-d)

Fig. 12 The determination of real length

Table 2 Evaluation of our calibration results

NO. dTru (mm) dMea (mm) Error (mm)

1 20.934 20.999 0.065

2 17.214 17.151 −0.063

3 22.095 22.097 0.002

4 22.604 22.655 0.051

5 21.072 21.173 0.101

6 21.546 21.664 0.118

7 21.459 21.471 0.012

8 19.353 19.260 −0.093

9 20.933 20.843 −0.090

10 18.027 17.965 −0.062

RMS 0.072
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A. The method based on the invariance of double cross-
ratio (named 3D method) [7]. The utilized 3D target
consists of two rigid planes that are perpendicular to
each other, and squares and/or rectangles exist on
each plane. Enough features points can be obtained
based on the invariance of double cross-ratio. The
root mean square error of the measurement is less
than 0.151 mm as mentioned in Ref. [7] within the
field of about 300×300 mm.

B. The planar target based method (named 2D
method) [10] approach uses a planar target with a
pattern of 3×3 squares to calibrate the LSLVS, the
size of each square is 35×35 mm. The intersection
points of the light stripe and calibration squares
with exactly known size can be obtained under the
image coordinate system. Accordingly, feature
points on the structured light plane can be gained
based on the invariance of cross-ratio. The root
mean square error of 30 distances as mentioned in

the experiment of [10] is 0.085 mm within the field
of about 200×200 mm.

C. The 1D target based method (named 1D method) [8]
in the calibration approach, has a target length of
about 400 mm. And six small holes, the distance of
each adjacent pair is 40 mm, are located on the
target. One feature point can be determined based on
the invariance of cross-ratio each time. Enough fea-
ture points can be obtained to calibrate the LSLVS
from the random movements of the 1D target. The
root mean square error of the measurement can
reach 0.065 mm in [8] within the field of about
300×200 mm. These corresponding target are illus-
trated in Fig. 13.

As metioned above, the 3D target based method is not
well suited for on-site calibration as some inevitable
problems, e.g., mutual occlusion between different
planes of the target, the difficulty of producing precisely,

Fig. 13 Targets of these described calibration methods in their paper. (a) is the 3D target in Ref. [7], (b) is the planar target in Ref. [10], while (c) is
the 1D target in Ref. [8]

Fig. 14 Images used to calibrate the sensor in Zhou’s method. (a)-(f) are images of the target in different positions captured by the camera
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the cumbersomeness of the target, etc. Comparatively,
the 2D method and 1D method is more suitable for
on-site calibration. But as the feature points of the 1D
target is less than the 2D target, the target should be
moved to more positions to finish the calibration (or get
an accurate result). Therefore, the 2D method is more
convenient and is popularly utilized. In this case, differ-
ent planar targets appeared.
As the most typical calibration method for line sturc-

tured light vision sensor is the planar target based
method [10], we employ the method in Ref. [10] to cali-
brate the sensor. The target is with a circle array pattern
and its machining accuracy is 0.01 mm. Images used to
calibrate the line structure light sensor are displayed in
Fig. 14. The calibration result is:

xþ 0:012yþ 0:389z−516:312 ¼ 0 ð24Þ

Based on the evaluation method described above, the
results of Zhou’s calibration method are listed in
Table 3.
The 3D coordinate of these feature points obtained ac-

cording these calibration methods are illustrated in
Fig. 15.

In Fig. 15, the method with two circles is the pro-
posed calibration method using a planar target with
two concentric circles, while the method with three
circles is the proposed calibration method using a
planar target with three concentric circles. Compared
with the calibration results listed in Table 2, we can
get the conclusion that the accuracy of our proposed
calibration method is comparable to the method
which uses a planar target.
As described above, the precision of these described

calibration methods are listed in Table 4.
Our proposed calibration method has nearly the

same accuracy with the 2D method and the 1D
method, and better than the 3D method. Further-
more, as the target utilized in our proposed approach
is a plane with several circles, it is easier to produce
precisely than the target used in the 2D method.
Although the 1D method can accomplish the on-site
calibration of LSLVS conveniently, the target has to
move to more positions than our proposed approach
in order to obtain enough feature points. Yet the
feature points of the 1D target only have the
constraint of length, which may affect the accuracy of
calibration. Neither production difficulty nor length
constraint exists in our proposed approach, so it is
more suitable for on-site calibration of LSLVS
compared with the three typical calibration methods.
Furthermore, the related feature information is sum-
marized as listed in Table 5.

Conclusions
In this paper, a calibration method based on proper-
ties of concentric circles is described. A planar target
with a pattern of several concentric circles is utilized
to finish the calibration of LSLVS. The normal vector
of the light plane is deduced from its vanishing line.
Then the parameter D is confirmed by the back

Table 3 Evaluation of Zhou’s calibration results

No. 1 2 3 4 5 6 7 8 9 10

dTru (mm) 20.934 17.214 22.095 22.604 21.072 21.546 21.459 19.353 20.933 18.027

dMea (mm) 20.997 17.295 22.02 22.687 21.098 21.466 21.415 19.362 21.025 18.12

Error (mm) 0.063 0.081 −0.075 0.083 0.026 −0.08 −0.044 0.009 0.092 0.093

RMS 0.070

Fig. 15 Feature points obtained according to different
calibration methods

Table 4 Comparison of calibration results

NO. 3D method 2D method 1D method Our method one

RMS 0.151 0.070 0.065 0.072
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projection plane deduced based on the light strip on
the target plane.
The contribution of our paper is that we initiate a

new method based on concentric circles to calibrate
LSLVS. The introduced method can reduce the per-
spective deviation and obtain a precise result. More-
over, the planar target used in our calibration method
is easy to make precisely, meanwhile, the proposed
method is efficient and convenient, especially for
onsite calibration.
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