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Abstract

We report on an auxiliary field approach for solving nonlinear eigenvalue problems occurring in nano-optical systems
with material dispersion. The material dispersion can be described by a rational function for the frequency-dependent
permittivity, e.g., by a Drude-Lorentz model or a rational function fit to measured material data. The approach is
applied to compute plasmonic resonances of a metallic grating.
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Introduction
Detailed knowledge on the resonant states of nano-optical
systems is essential for understanding the physical prop-
erties of the systems and for designing related photonic
devices [1–3]. With numerical approaches it is possible to
compute the resonant states, which are typically solutions
to nonlinear eigenvalue problems (NLEVPs) arising from
Maxwell’s equations. The material dispersion described
by the permittivity causes the nonlinearity of the eigen-
problems. A multitude of numerical solution techniques
are used for solving the NLEVPs, such as lineariza-
tion, iterative projection methods and contour integral
methods [4–6].
In nano-optics, linearization with physically derived

auxiliary fields is a common approach [7–12]. In this
work, we report on an auxiliary field approach based
on modeling the permittivity with rational functions.
We implement the approach using an iterative projec-
tion method. Motivated by scatterometry applications,
the numerical realization is applied to compute resonant
states of a metallic line grating.

Auxiliary field approach for dispersive
nano-optical systems
In the steady-state regime, the resonant states of nano-
optical systems satisfy the time-harmonic Maxwell’s
equations in a source-free medium, given in the second-
order form by
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∇ × μ(r,ω)−1∇ × E(r,ω) − ω2ε(r,ω)E(r,ω) = 0, (1)

where E(r,ω) is the electric field. The permittivity ten-
sor ε(r,ω), depending on the complex angular frequency
ω and the position r, describes the material dispersion
and the spatial distribution of materials. For optical fre-
quencies, the permeability tensor μ(r,ω) typically equals
the vacuum permeability μ0. Equation 1 becomes a non-
Hermitian problem in the presence of open boundary
conditions or lossy materials.
To obtain a numerical solution to Eq. (1), we apply

the finite element method (FEM) [13, 14]. This dis-
cretization technique leads to an algebraic NLEVP of
the form

Au = ω2B(ω)u, (2)

where A,B(ω) ∈ C
n×n are the system matrices, ω ∈ C is

an eigenvalue and u ∈ C
n is the corresponding eigen-

vector. The problem is nonlinear through the eigenvalue-
dependence of the mass matrix B(ω), which is based on
ε(r,ω). If the permittivity model ε(r,ω) is a rational func-
tion of the frequency with poles of order one, e.g., a Drude
model [15] or a rational fit of measured material data, the
matrix B(ω) has the form

B(ω) = B0 + 1
ω − ω1

B1 + · · · + 1
ω − ωN

BN , (3)

where B0, . . . ,BN ∈ C
n×n are matrices resulting from

the partial fraction decomposition and ω1, . . . ,ωN ∈ C

are the poles of the rational function. Note that physical
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dispersion models have to satisfy Kramers-Kronig rela-
tions to ensure causality.
To compute eigenvalues ω and corresponding eigenvec-

tors u, an implementation of the shift-and-invert Arnoldi
method is applied [16]. For this, the shifted eigenvalue
ω̃ = ω − σ , the shifted poles ω̃i = ωi − σ , i = 1, . . . ,N ,
and the auxiliary fields

u0 = ω

σ
u, ui = ω

ω − ωi
u, i = 1, . . . ,N ,

are defined, where σ is the chosen shift. As the matrices
B1, . . . ,BN have only non-zero entries for degrees of free-
dom of the discretization corresponding to the dispersive
object, the auxiliary fields u1, . . . ,uN can be restricted to
this subset. However, for the sake of a simpler notation,
we define them on the entire domain. Using the auxiliary
fields with Eq. (3) to reformulate Eq. (2) yields

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A −σ 2B0 −σB1 −σB2 . . . −σBN
−σ I σ I 0 0 . . . 0
σ I 0 ω̃1I 0 . . . 0

σ I 0 0
. . . . . .

...
...

...
...

. . . ω̃N−1I 0
σ I 0 0 . . . 0 ω̃NI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u
u0
u1
u2
...

uN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= ω̃

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 σB0 B1 B2 . . . BN
I 0 0 0 . . . 0

−I 0 I 0 . . . 0

−I 0 0
. . . . . .

...
...

...
...

. . . I 0
−I 0 0 . . . 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u
u0
u1
u2
...

uN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

where I ∈ R
n×n is the identity matrix. This is a linear

eigenvalue problem of the form

Ãũ = ω̃B̃ũ, (5)

where Ã, B̃ are augmented system matrices and ũ is an
augmented field containing the original eigenvector u
and the auxiliary fields u0, . . . ,uN . The linear eigenvalue
problem in Eq. (5) is solved by applying the Arnoldi
method to

Ã−1B̃ũ = 1
ω̃
ũ (6)

assuming that ũ is suitably scaled. The Arnoldi iteration
typically converges to the largest eigenvalue, i.e., to the
smallest shifted eigenvalue ω̃ = ω − σ . Thus, the eigen-
value ω of the NLEVP in Eq. (2) which is closest to the
shift σ is obtained. Note that the auxiliary field approach
increases the dimension of the eigenvalue problem with
the number of poles of the rational function.
Remark For the computation of the Krylov subspace

Km = span
{
ṽ, Ã−1B̃ṽ, . . . , (Ã−1B̃)m−1ṽ

}

within the Arnoldi iteration for Eq. (6), the linear system
Ãũ = B̃ṽ is considered for the given input vector

B̃ṽ =
[
f T , f T0 , f T1 , . . . , f TN

]T
,

where ṽ ∈ C
(N+2)n is an initial vector and f , f0, . . . , fN ∈

C
n. The first n rows in Eq. (4) with the initial vector ṽ for

the right-hand side lead to

Au − σ 2B0u0 − σB1u1 − · · · − σBNuN = ω̃f

and substitution of the auxiliary fields

u0 = ω̃

σ
f0 + u,

ui = ω̃

ω̃i
fi − σ

ω̃i
u, i = 1 . . . ,N , (7)

yields

Âu =
[
A − σ 2B0 + σ 2

ω̃1
B1 + · · · + σ 2

ω̃N
BN

]
u

= ω̃f + ω̃σ

[
B0 f0 + 1

ω̃1
B1f1 + · · · + 1

ω̃N
BNfN

]

= ω̃f̂ .

Instead of solving the linear system Ãũ = B̃ṽ to generate
the Krylov subspace Km, the system Âu = ω̃f̂ is solved
yielding u and Eq. (7) is used to achieve u0, . . . ,uN .
This approach has the advantage that the matrix Â

is equal to the matrix which is considered for solving
Maxwell’s equations in presence of a source. Such a scat-
tering problem has the form

[
A − ω2B(ω)

]
usc = s(ω),

where s(ω) is a source term. Setting ω = σ yields Â =[
A − σ 2B(σ )

]
. Thus, the implementation of a scatter-

ing solver can also be used in the framework of solving
eigenproblems.

Application tometallic grating
The presented approach is applied to a line grating con-
sisting of gold struts surrounded by air. We revisit an
experimentally realized setup supporting plasmonic res-
onances [17]. This system has been recently numerically
investigated [18]. The geometry is sketched in Fig. 1. Grat-
ing structures are of interest in, e.g., scatterometry. It has
been proposed to employ the resonant states of gratings
for increasing the sensitivity in measurements of their
spatial dimensions [19].
We apply the auxiliary field approach using the FEM

solver JCMsuite to compute the resonant state which
corresponds to an absorption peak near the wavelength
λ = 650 nm [18]. For the relative permittivity of the gold
grating, a one-pole Drude model
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Fig. 1 Sketch of a line grating consisting of gold surrounded by air. The structure is periodic in x direction and infinitely extended in y direction. The
period is a = 482.5 nm, the rod width is w = 347.5 nm and the rod height is h = 130 nm

εr(ω) = 1 − ω2
p

ω2 + iγω

is considered, where ωp = 1.26e+16 s−1 is the plasma
frequency and γ = 1.41e+14 s−1 is the damping coeffi-
cient. The permittivity is then given by ε(ω) = ε0εr(ω),
where ε0 is the vacuum permittivity. The chosen shift is
σ = 2πc/(650 nm), where c is the speed of light. Dif-
ferent finite element degrees p = 1, . . . , 6 and a fixed
mesh containing about 1e+03 triangles are applied. Cor-
ners are a known issue considering systems containing
metals. To deal with the occurring field singularities at
the corners, refinements with a minimum edge length of
about 0.016 nm are used. Bloch boundary conditions with
a Bloch vector of [2π/(5a), 0, 0] enforce the periodicity in
x direction. To realize the open boundary conditions in z
direction, perfectly matched layers (PMLs) are used. Con-
vergence of the PML method is ensured by applying an
adaptive numerical realization of the PML method [13].
The relative error of the eigenvalue ω is shown in Fig. 2,

where the reference solution ωref is the eigenvalue com-
puted with p = 6. Convergence to the reference solution
is observed. For the finite element degree p = 5, the
eigenvalue ω = 2πc/(649.1397576 + 11.0601049i nm ±
(6.2e−06 + 1.5e−06i nm)) is obtained.
In order to validate the results of the auxiliary field

approach, eigenvalues are calculated using a fixed-point
iteration. The same shift σ = 2πc/(650 nm) as before
is used to initialize the mass matrix B(σ ). Equation 2
becomes linear and is solved with the shift-and-invert
Arnoldi method. The resulting eigenvalue ωiter is then
used to update B(ωiter) and to repeat the procedure until
ωiter does not change up to a chosen tolerance. In Table 1,
the relative difference between the results from the aux-
iliary field approach, denoted by ω, and the results from
the fixed-point iteration, denoted by ωiter, are shown. An
abort condition for the fixed-point iteration with a toler-
ance of 1e−08 is chosen for the real and imaginary parts
of ωiter. This leads to about 10 iterations. For all finite ele-
ment degrees p = 1, . . . , 5, matching results for the two
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Fig. 2 Convergence of the eigenvalue. Relative error of the eigenvalue computed with the auxiliary field approach with respect to the numerical
resolution. The reference solution ωref is computed with the finite element degree p = 6
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Table 1 Comparison of eigenvalues computed with the auxiliary
field approach and with the fixed-point iteration, denoted by ω

and ωiter, respectively

p
∣∣∣ Re(ω−ωiter)

Re(ωiter)

∣∣∣
∣∣∣ Im(ω−ωiter)

Im(ωiter)

∣∣∣
1 6.6e−13 1.2e−10

2 1.0e−12 4.1e−10

3 9.9e−13 4.0e−10

4 9.4e−13 4.1e−10

5 9.3e−13 4.0e−10

approaches with a relative difference smaller than 4.1e−10
are obtained.

Conclusions
We have reported on an approach for computing eigenso-
lutions to Maxwell’s equations in dispersive media. Auxil-
iary fields are used to linearize the corresponding NLEVP.
The resulting linear eigenvalue problem is then solved
with the shift-and-invert Arnoldi method. The approach
has been applied to a metallic line grating and the results
for the eigenvalues have been validated by an implemen-
tation of a fixed-point iteration.
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