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Abstract

Precision and ultra-precision surfaces are crucial for many products – quality optics, joint & cranial implants, turbine
blades, and industrial moulds & dies, to name a few. Automation in this context is distinct from standard
procedures in industry, where the identical sequence of operations can be repeated over and over again.
Ultraprecision tolerances may be tens to hundreds of times tighter, and this is compounded by the hundreds of
diverse substrate materials in use. Even with modern computer numerically controlled (CNC) machines, skilled
craftspeople are needed to plan a process-chain for a new material or geometry. Processes working at these tight
tolerances, fall short of being fully-deterministic, so repeated process-metrology iterations are required. Surface-
correction loops may be automated, but expert assessment should be performed at each step to check for
unexpected anomalies. The ultimate goal of importing a part, processing autonomously, and delivering a finished
part to an “optical” specification with no human intervention, is still a long way off. This paper describes the
challenge and why it is important. It then melds together process-monitoring, psychology, artificial intelligence and
robotics, to take a far-sighted view of how the ultimate goal can be realised.
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Introduction
Components with tolerances in the micron-regime are
routinely mass-produced, from raw metal to finished
part, on fully-automated production lines. The auto-
sector is an obvious example. This paper considers why
this is not the case for ultra-precision surfaces, including
and especially optics, and what new methodologies could
be applied to remedy this.
The global market for photonics products for 2015

was €447B, with growth of 6% [1], and the medical im-
aging market alone was US$989M by 2015, growth 12%
[2]. New large-scale applications of freeform optics are
on the horizon, such as advanced lighting and imaging
systems for autonomous vehicles. Meanwhile, optical
components do not represent the only application for
complex, precise surfaces. For example, the knee and hip
joint replacement market is likely to face a revolution,
with bespoke additively-manufactured implants which
need precision finishing. Many high-precision moulds

and dies are still finished by hand-fettling. Overall, we
see significant market growth, but confronted by the in-
creasing difficulty in recruiting highly-skilled individuals
with the relevant ‘hands-on’ experience, as a generation
of such experts is retiring. With that in mind, we con-
sider how ultraprecision components are produced, and
how this could potentially be automated.
The ultra-precision manufacturing process-chain gen-

erally starts with a blank of material from a supplier, ei-
ther pre-ground to near-net form, or as a plane-parallel
slab, which may have been cast, sawn or milled, depend-
ing on material. Ductile materials, such as soft metals
and plastics, can be single-point diamond-turned dir-
ectly, providing nanometre (nm) surface textures, but
with repetitive turning marks and form-errors superim-
posed. Non rotationally-symmetric forms can be created
by servoing tool-infeed, synchronised with part-rotation.
For brittle materials such as glasses, crystals, ceramics

and hard metals (the main purpose of this paper), the trad-
itional route is to remove bulk material to produce the
overall geometry and basic forms of the functional surfaces,
using a classical curve-generator, or more usually today, a
CNC grinding machine. Depending on the grinding-
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quality, the functional surfaces may require refining (‘lap-
ping’ or ‘smoothing’) before polishing, using a progression
of finer abrasives. From our experience, a state-of-the-art
CNC grinding machine, working hard, brittle materials,
may deliver ~ 10 μm of sub-surface damage (SSD) with a
few microns RMS form error, depending on material, size
and geometry of the part. One such machine is the Cran-
field BoX™ machine [3]. Subsequent processing using CNC
free-abrasive polishing [4] and similar techniques such as
‘grolishing’ [5], aims to remove the SSD layer, correct form
errors, and refine texture to 1-2 nm Sa for most optics, but
down to 01–0.2 nm Sa in critical applications. Other re-
quirements may make optical fabrication particularly de-
manding, such as precise control of edges [6, 7].
In this paper, we first consider why autonomous manu-

facturing of ultraprecision surfaces is currently not possible,
and then focus on the role of expert-machine operators.
We report on an experiment to capture such expertise
through video and audio recordings, and present part of a
comprehensive flow chart so generated. We then consider
the role of digital process-monitoring, and report on devel-
opment of a bespoke force-measuring fixture. Together,
such methods provide feedstock information for artificial
intelligence techniques, which we describe. We summarise
our practical work on physical implementation of a robotic
cell. Finally, we draw the threads together in a diagram-
matic representation of the work-packages needed to de-
liver an autonomous cell, and the status of current work.

Methods
Aim – the challenge of autonomous manufacturing of
high-precision surfaces
Our ultimate goal is ‘bespoke mass production’ – mass-
produced parts that may be different, at no extra cost to
making them all-the-same. Such a Manufacturing Cell
would accept specifications for diverse parts, and be sup-
plied with blanks from the material suppliers. It would
then output ultra-precision parts, without manual inter-
vention. In working towards this goal, we are confronted
by currently-insurmountable obstacles, as outlined
below:-

1. How to start. We consider the diversity of materials
commonly in use, embracing a very wide range of
mechanical, thermal and chemical properties;
ductile to brittle, inert to chemically-active, and
zero-expansion to high expansion-coefficient. For
example, Schott produces over 120 optical glass
types; there are other specialist glass manufacturers,
numerous crystalline materials particularly for infra-
red wavelengths, ceramics for engineering and
mirror-substrates, hard alloys such as cobalt
chrome, and soft materials such as aluminium. Even
with state-of-the-art machines, expertise of skilled

operators is required to configure the optimum
process-chain (CNC grinding or diamond-turning
parameters, then abrasives, pads, pressures, speeds
and feeds etc. for CNC polishing and allied pro-
cesses and, of course, metrology).

2. Fundamental complexity of polishing at the
molecular scale, with imperfectly-understood inter-
play of brittle fracture, chemical attack, and plastic
flow (depending on material). The baseline widely
adopted is Preston’s empirical equation [8]:-

dz
dt

¼ kpPV ð1Þ

where z is the layer-thickness removed in a polishing
time t, kp is the empirical Preston coefficient, P the ap-
plied pressure, and V the relative speed between tool
and part.
There is a host of literature related to the fundamental

mechanisms of polishing, much in the context of semi-
conductor wafers and dielectric films being polished
face-down on a large polishing lap, and most related to
flat surfaces. The nominal.
contact-area is then that of the part. In corrective pol-

ishing of aspheric or free-from parts, a tool smaller than
the part usually faces down onto the face-up part, and
the relevant area is that of the tool.

Maury et al. [9] note that Preston’s Equation is not
strictly observed in practice, and the authors identify
two regimes, depending on the product of tool pres-
sure P and velocity V. They conclude that, for large
values of PV, the relationship is linear, but with a
non-zero intercept; for small PV values the slope is
higher, but with zero intercept. They attribute this
behaviour to variations in polishing efficiency, which
is reduced for high PV values due to the centrifugal
action and high down-forces tending to squeeze slurry
out of the working interface. Hocheng et al. [10]
present a detailed physical and chemical model based
on individual abrasive material-removal in a flow-
field. When the part’s surface is hydrated in polishing
and a slurry particle binds to the resulting Si (OH)4
molecule, and removes that molecule, the shear forces
must be larger than the binding force of the mol-
ecule. Their model considers that abrasives then re-
move material by a bear-and-shear process, while
slurry-flow through the interface between part and
tool plays a role in transporting the chemical compo-
nent of removal. They conclude that, “Preston’s
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equation can be properly interpreted and used with
modification”, as follows:-

M∞ f nD2
p D

2
m=12πγ

� �
μAð Þ1=2 PVð Þ1=2 ð2Þ

where M is the volumetric removal rate, f the abrasive
encounter frequency, n is a “number greater than 100”
(presumably reflecting the statistical nature of polishing),
Dp is the diameter of a slurry particle, Dm the diameter
of an Si (OH)4 molecule, γ is the surface energy between
the surface and sublayer molecule, μ the viscosity of the
slurry film, A the area in contact, and P and V the pol-
ishing relative-velocity and pressure respectively. Maury
et al. [9] derive a V1/2 theoretical relationship, distinct
from Preston’s V1.0, and then compare their theoretical
result with their empirical data which indicates V0.65.
They attribute this discrepancy to a portion of the con-
tact area between part and tool operating in the direct
contact mode, as a result of a “not ideally conformed
pad”. This is important, as pads wear in practice, and
from [9] this would be expected to cause a drift in the
exponent of V in Eq. 2 within the range 0.5–1.0 during
polishing. Similarly the term f in Eq. 2 is related to slurry
concentration, which directly impacts removal rate. This
can be affected by settlement on a face-up part or water-
evaporation (both enhancing removal), or within the
machine (reducing removal). We have observed these
phenomena in CNC polishing.
Note that Preston’s Equation is framed in terms of

layer-thickness removed, and pressure exerted. Dividing
by contact-area A gives the volumetric removal rate M
in terms of the polishing-force F:-

M ¼ kp FV ð3Þ
Interestingly, M is independent of the diameter of the

contact zone (e.g. tool-size) for constant force (or con-
stant weight with a gravity-loaded tool). In contrast,
Eq. 2 demonstrates a square-root dependence on A for
constant force, or a linear dependence on diameter.
Maury’s comment regarding shear force can also be
linked to the role of lateral friction. Pal et al. [11]
reinforce this, stating that friction at the workpiece sur-
face allows the abrasive particles to remove the hydrated
layer. They then describe the observed variability of the
coefficient of friction, stabilising during a period after
polishing starts, with the stabilised value depending on
load and relative velocity. They identify three removal
regimes, depending on the relationship between part,
pad and slurry:- Contact Mode, Hydroplaning Mode,
and Mixed Mode.
From the above papers, and numerous references cited

therein, we see a highly complex interplay of chemical and

mechanical removal mechanisms, with transitioning be-
tween removal-regimes with changing conditions. The
hydrodynamics at the polishing interface is clearly complex
even for flat parts, given the real case of imperfectly-flat (at
the molecular level) tools and parts. With aspheric and
freeform surfaces, this is greatly complicated, with tool-
miss-fit by hard tools potentially introducing variability in
the contact-modes identified in [10, 11]. This can be miti-
gated using compliant tools, or in the Precessions™ process,
using an inflated spherical bonnet [4]. Volumetric removal
rate in Eq. 2 also depends on the diameter of the slurry par-
ticles, which itself is a distribution almost always unknown
in detail, and varying with time during polishing as particles
can break down, or if polishing is interrupted, agglomerate.
Given the above complexity, the typical highly-skilled

polishing operator makes process-decisions, based not on
an in-depth understanding of the fundamental physics and
chemistry, but from years of hard-won practical experience.

3. Imperfect determinism of polishing. Given the above,
computer-controlled corrective polishing usually
aims to maintain the basic polishing parameters con-
stant throughput a polishing run. Usually, a tool
much smaller than the part will be used, which fol-
lows a pre-determined tool-path. Dwell-time modula-
tion is the preferred way to correct form-errors,
usually executed by changing the traverse-speed
along the tool-path. However, this presupposes a lin-
ear relationship, whereas the change in velocity-
vector (of tool-rotation plus traverse-speed) may well
disturb the hydrodynamics of the removal mechan-
ism. In practice, when a corrective algorithm com-
mands a removal-distribution over the surface, the
result will always fall short of perfect conformance.
80% convergence (20% error) is considered excellent;
often it can be inferior. Surfaces sometimes regress at
a particularly step, or unexpected artefacts appear, for
no known reason, requiring expert diagnosis and
remedy. This is clearly related to the fundamental
complexity above, variability in parameters not con-
trolled, and potential transitioning between removal
modes. The impact is the iterative nature of correct-
ing measured surface form-errors i.e. repeated cycles
of process and metrology. Whilst the corrective algo-
rithm itself may be executed automatically to gener-
ate a dwell-time map, the wise operator will inspect
the metrology data and the part at each step looking
for any anomalies, and may decide to take remedial
action by adjusting the process parameters in some
way.

4. Surface inaccessibility during polishing – abrasive
slurries obscure the surface during processing,
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preventing the skilled operator from conducting
metrology in-process.

5. When to stop processing. If the part is, say, 95%
compliant with some aspect of the specification, is
the 5% discrepancy within the uncertainty of
measurement, or should another corrective cycle be
performed (risking regression of form, or new
artefacts), or should a concession be sought from the
customer or end-user? Today, this is in the judge-
ment of either a skilled operator, or management.

Methodology – practical experience capturing expertise
of skilled operators
A core issue is then the role of skilled operators, i) to de-
fine initial process parameters, ii) decision-making at
each iterative step, and iii) assessing “final” results in
comparison with specification and deciding on closure
or otherwise. With this in view, we have explored ways
to capture know-how of expert operators, and identified
the (not insignificant) difficulties. We have then exam-
ined the practical steps that could be taken to improve
determinism of processes. The third and complementary
aspect is the engineering and software required to auto-
mate process-flow in practice.
Compared with other CNC manufacturing processes

in common use, producing ultra-precision surfaces pre-
sents a very different case in regard to its dependence on
the expertise of skilled operators. Given a new material
or geometry, this may involve selecting tools, pads, fix-
turing, polishing slurries and additives, machine config-
uration, tool-paths, feed-rates, tool-rotation speeds, and
more besides. Then, the skilled operator will assess
intermediate metrology data, and decide whether simply
to conduct another iterative correction based on the
error map and (for example) dwell-time moderation. Al-
ternatively, if some unexpected anomaly is discovered,
the operator may decide to change some process param-
eters accordingly.
With this in mind, we have considered whether it

would be feasible to capture this type of know-how in a
way that could be used in an automated Cell as part of a
model-based approach introduced in “The method of
case based reasoning applied to autonomous manufac-
turing” section. The proof-of-concept experiment we
conducted was to record CNC and metrology data, to-
gether with video footage and audio. Video was acquired
by a web-camera attached to the machine operator’s
safety helmet. Audio was recorded using a lapel micro-
phone, and the operator was encouraged to follow the,
‘think aloud protocol’ i.e. voicing thoughts aloud whilst
working, capturing both the logic of process-decisions,
and the resulting practical actions.

Individuals who participated in the experiment gave
their informed consent, and the partner company gave
consent at Managing Director level.
We selected four highly-skilled hand-polishers and op-

erators of CNC polishing machines and metrology in-
strumentation. Two of these worked for a research
organisation and two for an associated optical manufac-
turing company. Two main difficulties were encountered
in regard to the company workers:-

1. Initially, both company-workers proved unwilling
for any involvement in the project at any level, even
with support of their management, and assurances
of anonymity. One of these subsequently agreed to
limited participation; the other did not.

2. Before any videoing, it was agreed that the
recordings would be viewed by only the research
team, and would be stored securely. Issues of
commercial security led the participating company
to require that human faces, tooling, customer
components or metrology equipment in the general
area must be masked in the videos. This was
challenging and consumed significant resource.

Meanwhile, the two research operators were fully co-
operative throughout. In total, some 5 h of useful video
and audio was acquired. Comprehensive flow-charts
showing all process-steps and decision-points were then
derived from the recorded information. These flow
charts are too complex for presentation in this paper,
having over 40 logical functions, with decision-making
and branching. An enlargement of a small part of one
such flow-chart is shown for illustration in Fig. 1.
One important aspect of this, is that the flow chart has

captured the logical sequence of actions and decisions
performed by a skilled operator, when the operator may
well have not been consciously fully-aware of this se-
quence. In this regard, the technique is potentially
powerful in capturing expert knowledge. Nevertheless,
the experience also confirmed our preconception that
skilled operators in a commercial setting would be se-
cretive and possessive of their knowledge. In a research
setting, this appears not to be the case to anything like
the same extent, and this may provide the most useful
avenue to pursue this type of approach in the future.

The potential role of digital monitoring of process
variables
Given the above experience, the best approach appears
to be to focus capturing operator-expertise on aspects
that cannot be acquired any other way. An anecdotal ex-
ample we have experienced is adding a particular brand
of vinegar to acidify aluminium oxide slurries for polish-
ing electroless nickel coatings. Then, in addition, it is
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necessary automatically to record and associate together
in a data-base the widest practical set of process-
parameters that can be digitally-monitored and time-
stamped. Examples include the following:-

1. Full design specification of the part – geometry and
functional surfaces with tolerances

2. Physical, chemical and thermal data for the
substrate

3. Composition of abrasive media, coolants etc.,
including any special additives

4. Time-stamped in-process monitoring of abrasive
slurry specific gravity, temperature, pH, and prefer-
able particle size distribution. Slurry expelled from
the part-tool interface should be sampled as this is
a direct representation of the process, rather than
slurry in a remote tank which may have settled.

5. Time-stamped in-process monitoring of dynamic
variables such as normal and lateral components of
process-forces, process-torques, synchronised with
tool positions, speeds and accelerations derived
from the CNC controller

6. QR (Quick Response) codes on all tooling, pads and
fixtures, with QR readers

7. Metrology data

As mentioned above, it is unfortunate that a surface
undergoing processing cannot be measured directly in
real-time, as it is obscured by abrasive slurry or coolant. In
effect, the process is a ‘closed box’ – process-parameters

are input to the box, and sometime later, the part deliv-
ered by the box is then measured. We identify two main
avenues for applying AI techniques. First is to collect large
sets of corresponding part, process and metrology data,
and seek relationships between them using AI operating
in batch-mode. Second, there are possibilities for ‘opening
the box’, by gathering indirect information that allows
some prediction of the real-time evolution of the surface.
The proposed methodology involves monitoring specific
real-time process-variables that point to instantaneous
volumetric removal rate, then integrating these rates to
give the instantaneous surface form. In principle, the pre-
dicted form can then be compared with expectation, and
process variables modified accordingly ‘on-the-fly’. Once
again, AI seeks for input/output relationships, but is now
required to operate in real-time, and execution-speed may
be the limiting factor. We have discusses this with the
high power computing (HPC) community, to investigate
whether resource could be available on a ‘pay as you go’
model, and this indeed looks possible.
Process forces and torques are particularly critical

process-variables, and may provide useful information to
compensate for tool-wear and other effects including
variability of slurry parameters (concentration, particle
size distribution and pH). We have completed the de-
tailed design and dynamic finite element analysis of a
specialised fixture for the part which, at the time of writ-
ing, is out for quotation. Drawing on the importance of
frictional coupling in polishing [11], the new fixture is
designed to measure process-forces in three orthogonal

Fig. 1 Detail extracted from a comprehensive process flow-chart derived from recorded video and ‘think aloud’ audio
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directions, together with torques. First resonant fre-
quency is adequate to resolve ‘tramping’ effects from
asymmetries in a rotating tool. We plan to deploy this in
CNC polishing to gather real-time data, as above.

Application of autonomous intelligent systems/agents to
autonomous manufacturing
We postulate that to make progress we should consider
the Manufacturing Cell as an Autonomous Intelligent Sys-
tem (AIS). Currently, there is an unprecedented global
interest in the potential of Artificial Intelligence and the
applications of systems autonomy based on intelligent
software [12, 13]. Related applications include the autono-
mous planning-based control of spacecraft [14], the oil
well drilling process [15], and urban traffic signal strat-
egies [16]. These applications share similar challenges with
autonomous manufacture of optics, in particular the wide
range of starting conditions, the complexity of process,
the inherent uncertainty and imperfect determinism.
AIS are systems that function in dynamic and unpre-

dictable environments, making decisions and carrying out
actions in response to demands from users, and backed
up by sensed data from the environment. While there are
a range of architectural choices for AIS, engineering the
software that provides their overall management (their
‘brain’) is performed in a combination of two methods
that can be characterised as either “data-driven”, or
“model-based”. The former denotes those techniques such
as neural networks, genetic programming, and evolution-
ary computing which require very large data sets and
training sessions to learn the required function. A specific
example is the family of techniques called ‘Deep Learning’
that have proved very successful in helping implement the
object recognition part of autonomous vehicles, as well as
being adept at natural language processing [17]. Data-
driven approaches are particularly suited to system evolu-
tion and adaptation, as they can refine automatically with
upgraded training data, and generalise their application
with new training sets.
Model-driven systems, in contrast, are those that have

been explicitly engineered in a similar fashion to trad-
itional software artefacts, and are employed in the Space
[10] and Traffic Management [16] applications intro-
duced above. Knowledge of the AIS’s environment, the
AIS’s goals, and the AIS’s abilities to effect the world (its
actions) are stated as data structures within the applica-
tion. Model-driven systems may be more difficult to cre-
ate and evolve than data-driven equivalents, but can
more easily be adapted to give explanations of their be-
haviour, and can be embedded with established explicit
knowledge and procedural skills. Methods for engineer-
ing model-based systems are more mature than those
for data-driven systems, and important processes such
as validation and verification are more straightforward.

Different AIS, and indeed different parts of an AIS,
may be implemented with one method or another. For
example, a space satellite may need to plan operations in
space, and this planning may depend on the laws of mo-
tion. It would make no sense to engineer such a system
by it learning those laws from data - they are already
well known, hence they should be engineered (stored as
explicit knowledge) within the application. On the other
hand, if the satellite needs to identify planets, then a
sensible method to embody this function might be to
use large amounts of previously classified photographs
of planets, and employ a data-driven method such as
neural networks to implement a recognition function for
identifying planets.
The proposed autonomous manufacturing cell will re-

quire input of a requirements-specification for the fin-
ished part it is to create, and a blank of a specified
material, and will produce as output a finished product
to meet the specification. From the discussion above, it
is apparent that the cell will embody methods from both
model-based and data-driven autonomous system manu-
facture. This will require as input, for a specific task,
data and knowledge extracted from the specification of
the part to be produced.
For any task the Cell software will require access to

knowledge about the mechanical, thermal and chemical
properties of the wide range of materials that need to be
used within the task - in particular scientific knowledge
and manufacturers’ data regarding the materials. This,
together with invariant knowledge of the process itself
can be encoded into a model, including the likely effects
of particular machining tools.
There will be historical accounts of many past success-

ful attempts to create a part similar to the one at hand
which can be utilised by a data driven method to adopt
an old or adjust a new tool configuration. For example,
past cases indexed by parameter values of a particular
run of a machine will be available to be used by a Case-
Based Reasoning approach, as discussed below.
Hence, the Cell will employ a range of methods, both at

the model, and data-driven levels. The principle challenge is
to generate the process details of work-flow utilising the
components of the proposed Cell. To do this from first prin-
ciples would require an intelligent agent to be able to reason
with time, resources, actions, processes, events etc. in a dy-
namic and unpredictable world. In practice, for the synthesis
of a process step with complex parameters, preconditions
and effects, it is envisaged that a Case-Based approach
would be appropriate, which will use the memorised job-
histories and developed knowledge base. For the setup of an
initial multi step process, prediction regarding accumulated
effects, and an analysis of metrology data between in-
process steps, it is envisaged that we will use a causal model
relying on process simulation. Additionally, the Cell should
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possess enough knowledge and reasoning power to be able
to generate an explanation of its behaviour, and be able to
construct a process or parts of a process where a previous
one did not exist.
In operation, the Cell will employ the generated process

description as a template for producing and executing a
dynamic schedule, given the actual availability / condition
of the tools available to the cell. During execution, it will
support decision making in response to in-process real-
time monitoring and measurement data collected between
process-steps (e.g. checking to see whether the conditions
of a surface is what is expected using the 3D map informa-
tion). The operational level will also be required to per-
form recovery from unexpected process events, and may
have to re- invoke process plan generation if the job is not
advancing as expected.

The method of case based reasoning applied to
autonomous manufacturing
In the current stage of our research, we are focused on
Case-based reasoning (CBR) to be used to automate the
polishing process. CBR enables the re-use of concrete
relevant experience from the past, when dealing with a
new task/problem [18]. Problems that were solved in the
past and their solutions are memorised as cases in a case
base. To solve a new problem, CBR system employs a
defined similarity measure to be used to retrieve a case
(or cases) from the case-base, which is (are) the most
similar to the new problem. In order to address the dif-
ferences that may exist between the new problem and
the retrieved one, an adaption of the retrieved solution
to the problem needs to take place.
In our study of automation of polishing process we

start with corrective polishing process. A key question to
address is in which of its steps do the specialists

particularly use their skills/knowledge? Common steps
in grinding and corrective polishing using CNC ma-
chines are identified in Fig. 2, where the upper row of
boxes represents automated operations, and the grey
boxes in the lower row show examples of manual inter-
ventions. Cleaning the part between each step is re-
quired, but for clarity not shown.
A CBR system is assigned to each of the process steps.

Each case contains specific knowledge/expertise applied
in a specific context in order to decide on the next step.
As an example, let us consider a case for optimisation of
the processing parameters. Attributes of the case can be
split into 3 groups: (a) attributes concerning characteris-
tics of the part: diameter, thickness, radius-of-curvature,
etc.; (b) attributes concerning the material of the part,
which imply chemical, thermal and mechanical proper-
ties, and (c) description of the surface error-map. The
case-base communicates with data-bases, which contain
relevant data about materials. The solution part of each
case presents the values of parameters that the special-
ists set in the particular step, such as polishing mode,
process angle (degree) head speed (rpm), tool offset
(mm), tool overhang (mm), tool pressure (bar), rotation
(degree), point spacing (mm), track spacing (mm), sur-
face feed (mm/min). These parameter values serve as in-
put to the tool-path generator software on the CNC
polishing machine. The solution part of the case also
contains a new error map which is the result of the spe-
cified CNC run.
In the design of a CBR system, it is necessary to define a

similarity measure which determines which case from the
case-base is the most useful for the current polishing process
step for a new part. For example, the material is critical be-
cause it determines the removal rate and the optimum con-
ditions to achieve texture. As another example, the radius of

Fig. 2 Examples of common steps in CNC corrective polishing
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curvature affects the process angle-of-attack. The standard
simple similarity measure is the k-neighbour similarity,
which measures the weighted difference between attribute-
values of the new case and cases from the case-base [19].
However, in this CBR system, we need a more sophisticated
similarity measure to take into consideration how specific or
general some values of case attributes are. For that reason,
we plan to define ontology of concepts in ultra-high preci-
sion manufacturing, which will enable the system to infer
the level of similarity between two concepts, how specific
the concepts/values are, or what the level of commonality
between two compared concepts is. A pair of specific values
should be more important in the definition of similarity,
than two concepts that may have the same value, but are ra-
ther general.

Methodology for the mechanics of automation
In terms of practical implementation of an autonomous
cell, we have successfully combined an industrial robot
with a Zeeko CNC polishing machine and an interfer-
ometer measurement station, as shown in Fig. 3. Prelim-
inary work on this topic was previously reported [20].
Since then, the software and data acquisition and control
infrastructure has been extensively developed. The fol-
lowing complete cycle – the core requirements for an
autonomous cell - has now been demonstrated without
any manual intervention:-

1. Robot places part in auto-change chuck on polish-
ing machine

2. Polishing run is conducted
3. Robot lifts part from chuck, tips to expel surface-

water, and replaces in chuck
4. Machine drainage auto-switched from slurry system

to holding tank
5. Robot picks up a wash-down head and washes part

6. Machine drainage auto-switched back to slurry
system

7. Robot picks up air-nozzle and raster-scans to dry
the part

8. Robot transfers part to auto-change chuck on me-
trology station

9. Metrology station auto-aligned using interferometer
fringes, and fringe data acquired

10. Robot transfers part to chuck on polishing machine
ready for next cycle

Discussion
We commenced this paper pointing out that machining
parts to micron tolerances in fully-automated production
lines, without manual intervention, is standard practice
today. We have asked the question as to why this is not
possible for ultraprecision surfaces, such as optics. This
has led us to cite the diversity of materials in common
use, the complexity of the underlying physics and chemis-
try of material-removal, resulting in the imperfectly deter-
ministic nature of available processes. This has led us to
consider the human expertise required to define an appro-
priate ab initio process-chain for a part with a new geom-
etry or material, the need to review interim results in
iterative refinement of surfaces, and the decision as to
when ultimately to stop and accept the part.
This leads us to realise the fundamental importance of

digitally-acquiring as comprehensive process and metrology
data as is practicable; including real-time variables such as
process-forces and slurry-conditions, plus computer-
readable identification of interchangeable items such as fix-
turing, pads, tools etc. Given an accumulating data-base,
data mining can then be used to reveal underlying patterns
that may be beyond our current knowledge, for example, to
detect complex cause-and-effect relationships between
process variables and outputs. These can also inform the

Fig. 3 Robot cell with CNC polishing machine and interferometer station
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design of the components of CBR. For example, it may lead
to revised weights in the similarity measure between cases,
and may assist in the adaptation phase of the CBR as re-
quired to address the differences between a new case and
the case retrieved from the case base.
In reviewing how to proceed from the current status,

Fig. 4 is our synthesis of the primary work-packages re-
quired to implement an autonomous manufacturing cell.
Currently, the physical implementation of automation

using robots has been well-established, as described
above. This benefits from the wide range of end-
effectors and other automation components commer-
cially available. The psychological aspects of capturing
know-how of skilled operators has also been demon-
strated, giving insightful guidance as to how a complex
sequences of sub-operations are structured in practice.
However, this work also presented ‘human factors’ chal-
lenges, and the approach is probably more practical in a
research than a commercial environment.
We continue to work on several fronts to improve

processes, for example deploying non-Newtonian tools
to improve conformance and minimise potential for
transitioning between removal-regimes [10, 11]. This
follows the work of Kim and Burge [21], but has add-
itionally explored the relationship between tool-
rotation and materials properties, in order to enhance
removal rates. We are also developing a novel method
of measuring freeform surfaces, which will be re-
ported in due course. We routinely manufacture fix-
tures and tools using additive manufacturing, but

have yet to automate their design. As regards artificial
intelligence, this will require considerable effort, and
so we are carefully studying different strategies in
preparation for the implementation phase. Finally,
work has not started on Cell interfaces and cyber-
security, although these are regarded as critical items.

Conclusion
From the work reported above, our view is that the
way forward is to combine expertise captured pre-
dominantly in a research environment with i) com-
prehensive real-time process-data, ii) identification of
interchangeable tooling etc., and iii) metrology data
acquired between process-steps and on completion
and iv) a data base of physical, chemical and thermal
properties of substrate materials. Together, these will
provide the basic feedstock information to bring to
bear the artificial intelligence methods, such as de-
scribed in this paper, to design ab initio process
chains for new parts, optimise processes ‘on-the-fly’,
review interim metrology results, and make process-
decision to close the process loop fully-automatically.
The impact of successfully achieving autonomous
manufacture of ultraprecision surfaces is likely to be
very significant, given the growing market and in-
creasing shortage of highly-skilled practitioners in the
field. Full automation without human intervention is
extremely challenging, and well beyond today’s state-
of-the-art. Nevertheless, we have started on this road.

Fig. 4 Principal technical work-packages to deliver an autonomous cell
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CNC: Computer numerical control; HPC: High power computing;
Parms: Parameters; QR Code: Quick response code

Acknowledgements
The authors wish to acknowledge research grants from UK-EPSRC (including
the Network Plus initiative), UK-STFC, Innovate-UK and the UK Centre for Earth
Observation Instrumentation. They also wish to acknowledge the support of
the senior management at the anonymous company that participated in the
experiments to capture know-how from expert machine operators, and the
help of the one operator who did agree to participate. Zeeko Ltd. also
played a significant role, particularly in its leadership of the “RoboZeek”
Innovate-UK project, which developed the robotic automation of CNC polish-
ing machines. Hongyu Li and his work on freeform metrology for future au-
tonomous cells is financially supported by the EPSRC-funded University of
Huddersfield Future Metrology Hub. Chenhui An’s substantial effort on
mechanical design and finite element analysis for in-process force-measuring
is also gratefully acknowledged.

Authors’ contributions
DDW originated the concept of the autonomous cell, leads the team
working on it, and is the lead author and coordinator of the paper. TLM and
SP have contributed to the manuscript and the work reported, in two
complementary aspects of using artificial intelligence in this context. GY and
HYL were the willing research-organisation expert-operator participants, and
have contributed materially to the overall development of the Cell concept
reported in this paper. All authors read and approved the final manuscript.

Funding
The work reported under capturing the expertise of skilled operators was
supported by a grant from the UK Engineering and Physical Science
Research Council (EPSRC). The development of the CNC processing
technologies on which the work depended was supported by EPSRC and
the UK Science and Technology Facilities Council (STFC). Work on combining
robots CNC polishing machines to automate manual interventions was
supported by Innovate-UK and Zeeko Ltd. Metrology developments under-
pinning the automation work is supported by funding from the Future Me-
trology Hub at the University of Huddersfield, which is funded by EPSRC. H.
Li also gratefully acknowledges financial support from this source.

Availability of data and materials
The datasets generated and/or analysed during the current study are not
publicly available because the capturing of expert operator know-how was
conducted on the condition that the data is proprietary and will be kept
confidential. However, the conclusions presented in this paper are not
dependent on any aspect of the data itself, but only on the experience
gained acquiring it, which are described.

Competing interests
DDW is a founding director and Research Director of Zeeko Ltd., and has a
minority shareholding.

Author details
1Laboratory for Ultra Precision Surfaces, University of Huddersfield, TechSpace
One, SciTech Daresbury National Innovation Campus, Daresbury WA4 4AB,
United Kingdom. 2University of Huddersfield, Queensgate, Huddersfield HD1
3DH, UK. 3Nottingham University Business School, Jubilee Campus, Wollaton
Road, Nottingham NG8 1BB, UK. 4Research Center for Space Optical
Engineering, Harbin Institute of Technology, Harbin 150001, China.

Received: 7 February 2019 Accepted: 30 September 2019

References
1. Market Research Study Photonics 2017, Key Data, 3rd Edition, https://www.

photonics21.org/download/ppp-services/photonics-downloads/
Photonics21_3.-edition_Key-Data_Market-Research-Report-2018.pdf

2. Diagnostic Imaging Market, Global forecast to 2020, marketsandmarkets
(2016) https://www.marketsandmarkets.com/Market-Reports/diagnostic-
imaging-market-411.html

3. Tonnellier, X., Morantz, P., Shore, P., Compley, P.: Precision grinding for rapid
fabrication of segments for extremely large telescopes using the Cranfield
BoX. Proc. SPIE. 7739, (2010). https://doi.org/10.1117/12.858806

4. Walker, D., Freeman, R., Morton, R., McCavana, G., Beaucamp, A.: Use of the
‘Precessions’ process for pre-polishing and correcting 2D & 2½D form. Opt.
Express. 14(24), 11787–11795 (2006) ISSN: 1094–4087, Published by Opt.
Soc. Am. on http://www.opticsexpress.org/

5. Yu, Y., Walker, D., Li, H.: Implementing Grolishing process in Zeeko IRP
machines. Appl. Opt. 51(27), 6637–6640 (2012)

6. Walker, D., Yu, G., Li, H., Messelink, W., Evans, R., Beaucamp, A.: Edges in CNC
polishing: from mirror-segments towards semiconductors, paper 1: edges
on processing the global surface. Opt. Express. 20(18), 19787–19798 (2012)

7. Li, H., Walker, D., Yu, G., Sayle, A., Messelink, W., Evans, R., Beaucamp, A.: Edge
control in CNC polishing, paper 2: simulation and validation of tool
influence functions on edges. Opt. Express. 21(1), 370–381 (2013)

8. Preston, F.W., Soc, J.: Glass Technol. 11, 247 (1927)
9. Maury, A., Ouma, D., Boning, D., Chung, J.: Proc. Conf. Advanced

Metallisation and Interconnect Systems for ULSI Applications, San Diego,
California, Pub. Academic Press (1997)

10. Hocheng, H., Tsai, H.Y., Su, Y.J.: Modeling and experimental analysis of the
material removal rate in the chemical mechanical planarization of dielectric
films and bare silicon wafers. Electrochem. Soc. 148(10), G581–G586 (2001)

11. Pal, R.K., Garg, H., Sarepaka, R.G.V., Baghel, P.: Friction at Workpiece-Polisher
Interface during Optical Polishing Process. Int. J. Mech. Eng. 1(1), 32–35
(2014)

12. Hall, W, Pesenti, J: Growing the artificial intelligence industry in the UK.
https://www.gov.uk/government/publications/growing-the-artificial-
intelligence-industry-in-the-uk. Accessed 30 Jan 2019

13. The National AI Research and Development Strategic Plan, UK. https://www.
nitrd.gov/PUBS/national_ai_rd_strategic_plan.pdf. Accessed 30 Jan 2019

14. Bresina, J.L.: Activity planning for a lunar orbital mission. AI Mag. 37(2), 7–18 (2016)
15. Fox, M., Long, D., Guillaume, R., Sangulov, R.: Patent Method of Creating and

Executing a Plan, WO2016100973A1, 23 (2016)
16. McCluskey, T.L., Vallati, M.: Embedding Automated Planning within Urban

Traffic Management Operations. In: Proceedings of the International
Conference on Automated Planning and Scheduling ICAPS (2017)

17. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12,
2493–2537 (2011)

18. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Francisco (1993)
19. Richter, M., Weber, R.: Case-based reasoning: a textbook. Springer-Verlag,

Berlin (2013)
20. Walker, D., Yu, G., Bibby, M., Dunn, C., Li, H., Wu, Z., Xiao, P., Zhang, P.:

Robotic automation in computer controlled polishing. J. Eur. Opt. Soc.-
Rapid. 11, 16005 (2016)

21. Kim, D.W., Burge, J.H.: Rigid conformal polishing tool using non-linear visco-
elastic effect. Opt. Express. 18(3), 2242–2257 (2010)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Walker et al. Journal of the European Optical Society-Rapid Publications           (2019) 15:24 Page 10 of 10

https://www.photonics21.org/download/ppp-services/photonics-downloads/Photonics21_3.-edition_Key-Data_Market-Research-Report-2018.pdf
https://www.photonics21.org/download/ppp-services/photonics-downloads/Photonics21_3.-edition_Key-Data_Market-Research-Report-2018.pdf
https://www.photonics21.org/download/ppp-services/photonics-downloads/Photonics21_3.-edition_Key-Data_Market-Research-Report-2018.pdf
https://www.marketsandmarkets.com/Market-Reports/diagnostic-imaging-market-411.html
https://www.marketsandmarkets.com/Market-Reports/diagnostic-imaging-market-411.html
https://doi.org/10.1117/12.858806
http://www.opticsexpress.org/
https://www.gov.uk/government/publications/growing-the-artificial-intelligence-industry-in-the-uk
https://www.gov.uk/government/publications/growing-the-artificial-intelligence-industry-in-the-uk
https://www.nitrd.gov/PUBS/national_ai_rd_strategic_plan.pdf
https://www.nitrd.gov/PUBS/national_ai_rd_strategic_plan.pdf

	Abstract
	Introduction
	Methods
	Aim – the challenge of autonomous manufacturing of high-precision surfaces
	Methodology – practical experience capturing expertise of skilled operators
	The potential role of digital monitoring of process variables
	Application of autonomous intelligent systems/agents to autonomous manufacturing
	The method of case based reasoning applied to autonomous manufacturing
	Methodology for the mechanics of automation

	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

