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Abstract

Modern optical multi-camera systems require integrating many camera modules in a small volume. A new space-saving
concept for such imaging systems is presented, based on intersecting optical paths that utilize one or more common
elements for the respective optical paths. The principles for the optimization for such systems is examined, providing the
theory for geometric optimization constraints. These principles can become useful in designing e. g. spatially challenging
360-degree imaging systems for surveillance and consumer applications.
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Introduction
Imaging refractive optical systems are most often de-
signed by using sequential raytracing software, and the
underlying principle in design is to optimize the optical
surfaces to a merit function that is tailored to the speci-
fication of the optical system under consideration [1].
While this approach is proven and quite straightforward,
there are design problems that cannot be satisfied with
simple barrel-based optics where the optimization is
done with respect to one optical axis. For example,
multi-camera imaging systems for extreme wideangle
photography aim to provide a full 360-degree spatial im-
aging capability, combining the image space of several
optical barrel-sensor systems by software means, such as
stitching [2]. These systems are typically more than 15
cm in diameter, where it is assumed that individual en-
trance pupils of the lenses are ca. 60 mm or more apart,
approximating or slightly exceeding the human interpu-
pillary distance (IPD) between the optical axes of the
lenses [2]. This matching is important for achieving real-
istic three-dimensional (3-D) imaging capability, to
present the imaged content to the user with virtual real-
ity viewing devices.
In order to save space, a design framework based on

intersecting optical axes is proposed. The underlying
principle in this design is to utilize, for both optical axes,
one or more common optical elements to provide an

optical function simultaneously for both optical paths.
The easiest way to think of this type of design is to inter-
sect the optical axes orthogonally to each other at the lo-
cation of the common element.
Previously, common-element based imaging arrays have

been designed for gigapixel imaging for instance, in the
DARPA (Defense Advanced Research Projects Agency)
SCENICC (Soldier Centric Imaging via Computational
Cameras) program [3–5]. In the AWARE (Advanced Wide
field of view Architectures for Image Reconstruction and
Exploitation) program within SCENICC, a monocentric
multicamera array was designed to provide 2-gigapixel [4]
and 100-gigapixel [5] imagery by arranging a multicamera
array at the back focal region behind a single or dual elem-
ent spherical lens system. For this approach to work for all
the individual cameras, all surfaces in the spherical lens sys-
tem were concentric, forming, in effect, a multilayer ball.
The cameras each had a relay optic to convey a partially
overlapping image field on the array of individual image
sensors. Free-space or fiber-optic relay optics were used for
each individual camera to provide focusing on the flat
image sensor [5].
The immediate effect of applying a common element

for two optical paths in the same design is that the
optimization needs to dimension the common element
in such a way that the propagation of the full field needs
to be able to pass through this element, in both orthog-
onal directions. The overall effect of designing systems
with intersecting optical axes is that the optimization pa-
rameters for each axis as well as their tolerances are
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singly or multiply coupled to each other. This article ex-
amines the taxonomy and optimization principles of
such systems and discusses practical design workflow as-
pects of optical dual-axis systems with orthogonally
coupled constraints. To the Author’s knowledge, this is
the first report where the theoretical limit to minimize
the dimensions of an optical design, where the optical
paths intersect orthogonally within a common element,
is described.

Taxonomy of optical designs for orthogonally
coupled optical systems
Limiting the approach of this study to orthogonally
coupled dual optics where the optical design of both inter-
secting axes is identical, a taxonomy can be developed,
taking into account the common aspects applied in the
design (Fig. 1). One major differentiator in the designs is
the sign of the marginal ray angle at the leading surface of
the common element. The marginal ray can be converging
or diverging, i. e. the first surface can have a larger or

smaller semidiameter than the second surface of the com-
mon element, whether it is an air gap or an optical glass
element. Taking first the case of converging marginal rays,
the simplest system utilizes a central air gap in the design
(Fig. 1a). If the air gap is replaced with an optical material,
we arrive at the design of Fig. 1b). Considering these de-
signs, but replacing the marginal ray with a diverging one,
in Fig. 1c) the central element is again an air space, and in
Fig. 1d), the central element is an optical material. These
four proto designs constitute the basis of the taxonomy
for finding the geometrical constraints to minimize the
distance between the first surface of the common element
and the intersecting orthogonal optical axis. Further de-
sign considerations arise with regard to the positioning of
the stop in the optical paths which is shown in Fig. 2 that
presents the taxonomy tree. The taxonomy tree shows all
theoretically possible configurations, however, some of
these may not be feasible with regard to making practic-
able imaging optics. In the following, the stop is only
regarded as any arbitrary surface within the design.

Fig. 1 Four basic cases of the orthogonally coupled optics design: a Converging marginal ray, air as central element; b Converging marginal ray,
glass as central element; c Diverging marginal ray, air as central element; d Diverging marginal ray, glass as central element
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There are differences as to how the optimization
constraints imposed on the design will be made in
order to force the optimization process to realize a
given topology of the taxonomy tree. The common
feature, however, is the dimensioning of the central
element, whether it is made of air or an optical mater-
ial. The topology outlined in the taxonomy will deter-
mine the mathematical and the theoretical limit to
which these designs can be minimized in size. In
addition to constraining the central, common element,
also limiting constraints for the surrounding elements
in the complete design will need to be imposed.

Mathematical principles in the constraint
definition for the dual orthogonal design
In the following treatment, it is assumed that in the dual
orthogonal design, both optical functions, in each of the
orthogonal optical paths, are identical. The treatment is
also limited to spherical surfaces constituting the com-
mon, central element. It is of course possible to design
space-saving systems where the optical designs for either
axis are different, or where the intersecting axes are
non-orthogonally oriented. Similar mathematics can be
developed for these cases, using the principles outlined
in this article. First, the mathematical expressions or the
constraints of the element are developed (Constraints
for the common central element section) and then, the
constraints of the surrounding elements are described
(Constraints for the surrounding elements section).

Constraints for the common central element
The constraints that apply in the optical design of or-
thogonally coupled systems relate to the dimensions of
the central element whether it is air (Fig. 1a and c) or an
optical material (Fig. 1b and d). Furthermore, the con-
straints limiting the geometry can be defined in terms of
the signs of the leading and trailing surfaces of the com-
mon central element and the sign of the marginal ray
angle β, as is conceptually shown in Fig. 3. From Fig. 3,
we can see that for each optical path arrangement utiliz-
ing a central, common element, the leading surface S
can either be positive (convex toward the left) or nega-
tive (convex toward the right). Similarly, for the trailing
surface T, the same conditions regarding the signs of the
surface apply. For the leading surface S, the marginal ray
leaving S at angle β can either be converging (β < 0) or
diverging (β > 0). The limiting calculations must be done
for both the leading surfaces S and S′, as well as the
trailing surfaces T and T’, where the primed symbols
refer to the orthogonal axis and its respective surfaces,
as either surface, when placed too close, can potentially
partially block the passage of light from the orthogonal
light train. In total, there are eight conditions for which
the mathematical expressions limiting the thickness of
the central element need to be developed (see Table 1).
Table 1 presents the taxonomy of Fig. 1 as a table with

abbreviations that signify the eight main cases that guide
the placement of the common central element, now tak-
ing into account also the signs of the curvatures of the
leading and trailing surfaces.

Fig. 2 Taxonomy of orthogonally coupled optics design
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The mathematical framework is the same, irrespective
of whether the central element is an air space or an op-
tical material. The key principle is in ensuring that the
surfaces of the orthogonal train of light passage do not
interfere with the propagation of light of the other main
direction. Therefore, in Table 1, the surfaces S and S′ as
well as T and T’ are designated to be either positive or
negative, following the conventions used in optical simu-
lation software [6]. The constraints also only differ with
regard to the sign of the marginal ray angle (converging
rays or diverging rays).
It is helpful to think of the central point in the de-

sign as the intersection of the orthogonal optical axes.
This intersection is therefore located within the com-
mon element. As it does not represent a real surface
in the design, it can be incorporated in optimization
as a “dummy surface” D, which in Zemax OpticStudio
is a surface with no effect on light propagation [6].
Therefore, in the following calculations, the distance t
after the surface S and S′ (the distance between S
and T as well as between S′ and T’) will be the sum
of the distances eS and eT to and from the intersect-
ing optical axis (dummy surface D) (subscripts S and
T refer to the leading surface S and the trailing sur-
face T, respectively):

t ¼ eS þ eT ð1Þ

From Fig. 3, it can be seen that there are conditions
where the surfaces never can overlap the light path of
the orthogonal light train. These occur when the leading
surface S is positive, and the trailing surface T is negative
(cases C + - and D + - in Table 1). In these cases, if the
marginal ray is converging (β < 0), an adequate condition

is that the near edges of the surfaces S and S′ do not
intersect:

eS > hS ð2Þ
where hS is the marginal ray height at the surface S (or,
clear semidiameter of surface S). When β > 0, respect-
ively, the far edge of surface S′ must not intersect with
the marginal ray. From trigonometry, it is easy to obtain:

eS > hS � 1þ tanβð Þ= 1− tanβð Þ þ sS ð3Þ

Where sS ¼ rS −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2S − h2S

q
is the sag of surface S and rS is

the radius of the surface S.
At the trailing surface, conditions expressed by (1) and

(2) are applied conversely. For the diverging case (β > 0),

eT > hT ð4Þ
and for the converging case (β < 0),

eT > hT � 1þ tanβð Þ= 1− tanβð Þ þ sT ð5Þ
where the quantities hT and sT refer to the marginal ray
height and sag, respectively, of surface T and T’.
The calculation for the conditions where the lead-

ing surface S is negative leads to a more complicated
expression, which can be solved as an abstract trig-
onometric problem (see Fig. 4). Mathematically, this
can be expressed in terms of hS, the marginal ray
height at surface S and rS, the radius of the surface
S, as well as the marginal ray angle β of the surface
S. These quantities are obtained in sequential optical
simulation from the optimization of the leading sur-
face. Starting with the following trigonometric iden-
tities from Fig. 4, where the angle α is the angle
defined by the height hS of the marginal ray leaving
surface S (point q) and the radius rS of surface S
(α = arcsin (hS/rS)). The fundamental equations for
line A, line B perpendicular to line A, and circle S′
are:

y ¼ tanβ xþ b; b ¼ hS � tanβ dS for Line Að Þ ð6Þ
y ¼ −1= tanβ xþ f;
f ¼ 1−1= tanβð Þ cS for Line Bð Þ

ð7Þ

rS
2 ¼ x� cSð Þ2 þ y� cSð Þ2 for Circle S’ð Þ ð8Þ

denoting m = tanβ and dS
2 = rS

2 – hS
2, x and y can be

Fig. 3 The basic considerations for orthogonally coupled optics
design. Identical considerations apply in the orthogonal direction
(not shown here)

Table 1 Classification of constraint conditions for the central element. The constraints arise from the sign of the leading and trailing
surfaces (positive or negative) as well as the sign of the marginal ray leaving the leading surface (converging or diverging)

Leading surface / Trailing surface Positive Negative

Positive Converging (C++) Diverging (D++) Converging (C − +) Diverging (D − +)

Negative Converging (C + −) Diverging (D + −) Converging (C − −) Diverging (D − −)
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eliminated, and for cS, we obtain the solution of a quad-
ratic equation (for full derivation, see Appendix):

cS ¼ −B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AK

p

2A
ð9Þ

where the coefficients are

A ¼ m4 � 2m3 þm2−2mþ 1 ð10Þ
B ¼ 2 m−m2

� �
m2dS−mhS
� �þ m−1ð Þ hS−mdSð Þ� �

ð11Þ
K ¼ m4d2

s − 2m3dShS − 2mdShS − d2
s ð12Þ

To obtain the distance from surface S to the orthog-
onal optical axis, we identify for our final result from
Fig. 4:

eS ¼ cS � rS ð13Þ
In the calculations, there arise conditions that exclude

some angles due to the geometry of the problem (Fig. 4)
as well as due to that the sides of the equation cannot be

divided by zero: β ≠ 0o, β < 45o, β > −45o. At β = 0o, we
arrive at the trivial solution eS = hS. Note that the above
derivation leading to (13) applies both to the converging
and diverging marginal rays.
Conversely, again, a similar calculation can be applied

to the positive sign trailing surfaces to obtain eT (the
“thickness” [7] of the dummy surface D to the trailing
surface T), substituting the relevant quantities hT (mar-
ginal ray height at the surface T), dT (distance of the
marginal ray intersection point with surface T in the
horizontal direction), and rT (radius of surface T) for the
marginal ray angle β.
For designs dimensioning the central element by (13),

first and foremost, the optimization constrains the thick-
ness of the central element to equal its diameter adding
the sag of the surfaces (the sign of the sag included).
Here, the marginal ray of the field corresponding to the
largest field of view (FOV) of the lens design needs to be
able to pass through the central element without even
tangentially hitting the side surfaces of the element.
Therefore, the clear semidiameter of the central element,
as well as its thickness, may need to be larger than is

Fig. 4 Lens design constraints for the central element after preceding surface S. The orthogonal optical axes are denoted by the dot-dashed
lines, and they also represent the dummy surfaces D (vertical axis) and D’ (horizontal axis). The marginal ray leaves the leading surface S at point
q, at the marginal angle β. The closest the orthogonal surface can get to the intersection of the two orthogonal axes is limited by line A which is
the tangent of surface S′, defined by the marginal angle β at point p (grazing incidence for the marginal ray). Line B is perpendicular to line A
and is defined by points o and p
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necessary for conventional single-barrel designs, to pass
this marginal ray.

Constraints for the surrounding elements
If the maximum diameter of the first surface in the lens
is specified, several dimensions for the design can be cal-
culated. Often, the maximum optical track length is also
defined. For instance, the common central element can
be placed at half the maximum track length, and the
upper limit of the semidiameters of all elements can
then be calculated.
If the central element is the only common optical part

in the dual orthogonal design, the positioning of this
central element is not constrained by the surrounding
surfaces, provided that the semidiameters of the surfaces
n of the preceding elements prior to the intersection of
the orthogonal axes are not, respectively, larger than
their distance en subtracting their sag sn, from the
central dummy surface D of the common element. For
each preceding element, therefore:

hn <¼ en−sn ð14Þ
where hn is the semidiameter of surface n (note that the
sign of the sag as defined in Zemax OpticStudio [6] is
important). The center of the common element or the
corresponding air space (i. e. the intersection of the op-
tical axes) must therefore be placed at least the distance
hn from any and all preceding elements.
The center of the common element is also a constraint

for the optimization of the optical elements placed after
the common element in the optical design, limiting the
semidiameter of each subsequent element to be

hn <¼ en þ sn ð15Þ
where the same sign convention as in Eq. (14) is used
for the sag sn.
It should be noted that the constraining Eqs. (13, 14

and 15) apply for both axes in the dual orthogonal de-
sign, simultaneously. Therefore, only one optical path
needs to be solved, as the optical designs will be identi-
cal in both directions, independently of each other, only
constrained by the geometry of the orthogonal design.
All parameters required for the dual-orthogonal design
originate from either one of these orthogonal axes, as all
single elements and optical groups in the design are
identical, along both optical paths.

Discussion
The optical designs developed in this article that allow
optical paths to intersect present additional degrees of
difficulty arising from the coupled constraints affecting
both of the respective orthogonal optical paths simultan-
eously. The problem of dimensioning the central

element can be solved using the principles presented in
Eq. (13), and rules for dimensioning the other elements
can be found in Eqs. (14) and (15). A flowchart for the
design process can then be developed, depending on the
set of initial requirements and specifications, as shown
in Fig. 5.
As the flowchart shows, the design first starts with the

fundamental specifications for the optical design. Some
of the geometrical considerations can then be directly
derived from the specified values for the lens diameter
and optical track length. Notably, the numerical aperture
and viewing angle as well as focal length of the objective
will not play a role in specifying the properties of the
central element. Assuming that the most suitable appli-
cation of optics is in wideangle multicamera systems,
hyperhemispherical optical designs commonly apply
telecentric back focal systems [7]. Therefore, the com-
mon element can very well be placed behind the aper-
ture stop, making it simple to design the central element
using the constraint calculations of constraints for the
common central element and constraints for the
surrounding elements sections. Indeed, the main design
consideration in the lens specification will be the choice
for the starting design. Systems with many surfaces in
the middle and toward the back focal range of the design
will probably not be suitable to apply the orthogonal
crossed-path design outlined in this article.
The second main consideration in the design spe-

cification concerns the image sensor to be applied in
the design. There are many design drivers that de-
pend on the application of the system to be de-
signed. Some applications aim at a high image
quality with low distortions, and others are opti-
mized with regard to high efficiency in light
throughput and even near infrared performance.
Sensors that suit these applications must be selected,
and the optical design subjected to the requirements
imposed by the sensor.
Once the specification is defined, the semidiameter

upper limit for the preceding surfaces (before the
common element) are written out as geometric ex-
pressions in the merit function, for each surface using
(14). Chip zone width [6] must be taken into account
in physically realistic design for each complete elem-
ent so as not to make the lens large enough to inter-
sect with the corresponding element in the
orthogonal path. After this, the common element is
dimensioned according to the principles presented in
Chapter 3 (Eq. 13), giving us the thickness of surface
S (to the dummy surface at the intersection of the or-
thogonal optical paths). The semidiameter of the
dummy, central surface is calculated by the Zemax
OpticStudio optimization routine, as the marginal ray
angle β stays the same when passing through the
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dummy surface. This calculation is written as a
Zemax Programming Language (ZPL) routine in the
Lens Data Editor (for optimization in Zemax Optic-
Studio [6]). Finally, the maximum semidiameters of
the trailing elements (those after the common elem-
ent) are written out in the merit function, similarly to
how the preceding elements were limited in size by
Eq. (15).
The optimization itself must make use of the common

element and its lower thickness limit. As this will be a
new constraint in the design, most likely, additional sur-
faces must be used to balance the optical performance
with a similar design without a constraining common
element.
If more than one common elements are included in

the design, they involve additional surfaces jointly uti-
lized by both of the orthogonal optical paths in the sys-
tem to be designed. Let us name one of these surfaces C.
Then, an additional constraint is imposed on this com-
mon surface C:

rC ¼ tCD ð16Þ

where rC refers to the radius of the common surface C,
and tCD refers to the track length from the surface C to
the dummy surface D, i. e. the radius of the common
surface C must equal its distance from the intersection
of the two orthogonal paths. This approach has been
already used in the design of the monocentric multiscale
imagers [4, 5], where the common spherical element
surfaces are all concentric. This new constraint ties the
optical system tightly together with little room for toler-
ancing. A prospective application for this approach
might be a hyperhemispherical camera system, incorpor-
ating an outermost, joint spherical lens surface as the
first surface of the design. Such a system with three
dual-camera modules is conceptually presented in Fig. 6.
In the system of Fig. 6, orthogonally arranged imaging

paths cross at a common element within each of the
three dual-camera modules. In addition, a joint outer
surface concentric with the central, common element

Fig. 5 Flowchart for lens design with orthogonally coupled constraints
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has been designed as the outermost surface of the dual-
camera module. Placing these modules 120 degrees apart
provides a 360-degree camera view of the environment,
with a possibility of viewing the scene in three dimen-
sions, as the camera views overlap to provide the right-
eye and left-eye views from all directions.

Conclusions
The principles outlined in this paper present a way to de-
sign space-saving optical systems that may make it pos-
sible to reduce the size of, for instance, multicamera
systems for security, surveillance, and virtual reality 3-D
imaging, making these systems better accessible to the
consumer. Previous efforts to design military multiscale
imagers [3–5] relied on dense packing of the imager array
[4], resulting in significant space savings compared to
hemispherical imagers composed of dense-packed individ-
ual cameras with no common elements [4]. No theoretical
limits for placing the optical elements in relation to the
common element were given, as the imager array size was
limited by the packing constraints of placing the cameras
as close to each other as spatially possible [4, 5]. For the
first time, in this research, the theoretical limit to
minimize the space between the first and second surface
in a common, central optical element is reported.
In optical simulation, the mathematical expressions for

the constraints can be incorporated in the merit function
and as hard limits in the lens data editor [6] (in Zemax
OpticStudio as Zemax Programming Language (ZPL)
routines).

Further work will involve realistic optical designs using
the principles presented in this work, as well as develop-
ing the theory for tolerancing these orthogonally coupled
designs. The ZPL routines will also be developed, in
order to properly optimize the designs under orthogon-
ally coupled geometrical constraints.

Appendix
For the full derivation of the trigonometric solution to
the smallest distance the orthogonally oriented optical
surfaces S and S’ can be placed, refer to Fig. 4 in the
body of this article.
The problem can be abstracted by: “Find the distance

eS for which line A, intersecting circle S at point q = (dS,
hS) at angle β tangentially intersects the circle S’ at point
p. The center of circle S is at (0, 0), and the center of cir-
cle S’ is at point o = (rS + eS, rS + eS), where rS is the ra-

dius of both S and S’, and dS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2S − r2S

q
.”

From sequential optical simulation, the known quan-
tities are the radius rS of circle (surface) S, the marginal
ray height at surface S hS, and the marginal ray angle β,
since these will be solved for surface S before the
optimization proceeds any further.
From Fig. 4, we can identify

cS ¼ rS þ eS ð17Þ
and from the fundamental equations of a line

y ¼ tanβ xþ b;

b ¼ hS � tanβ dS for Line Að Þ
ð18Þ

y ¼ −1= tanβ xþ f;

f ¼ 1þ 1= tanβð ÞcS for Line Bð Þ
ð19Þ

(note that line B is perpendicular to line A, and β ≠ 0)
In addition, we have the equation for a circle

rS
2 ¼ x� cSð Þ2 þ y� cSð Þ2 for Circle S’ð Þ ð20Þ

Let us denote tanβ = m. At point q, for line A:

hS ¼ mdS þ b ð21Þ
from which, solving for b:

b ¼ hS �mdS ð22Þ
Likewise, at point o, for line B:

cS ¼ −cS=mþ f ð23Þ
and solving for f:

f ¼ 1þ 1=mð Þ cS ð24Þ
The relations (20-23) give us for line A:

Fig. 6 Three-dimensional representation of a speculative 360-degree
multi-camera solution providing a three-dimensional view. This
design utilizes three symmetrically positioned identical dual-path
modules with orthogonally intersecting optical axes and a central
common element, as well as one joint outer surface. Some internal
components are also shown in the Figure

Kimmel Journal of the European Optical Society-Rapid Publications           (2019) 15:25 Page 8 of 9



y ¼ mxþ hS �mdS ð25Þ
And for Line B:

y ¼ −x=mþ 1þ 1=mð ÞcS ð26Þ
We also have the equation for circle S’ (20).
Now, we have three equations and three unknowns x,

y, and cS. Solving first for x at point p (intersection of
lines A and B on circle S’):

mxþ hS �mdS ¼ −x=mþ 1þ 1=mð ÞcS ð27Þ

from which

x ¼ mþ 1ð ÞcS þm2dS−mhS
� �

= m2 þ 1
� � ð28Þ

Substituting x to the equation for line A (18) we
obtain

y ¼ m2 þm
� �

cS þm3dS−m
2hS þ m2 þ 1

� �
hS−mdSð Þ� �

ð29Þ
Substituting x from (28) as well as y from (30) which

both contain cS to (20) we get:

mþ 1ð Þ cS þm2dS−mhS− m2 þ 1ð Þ cS
m2 þ 1

� �2

þ m2 þmð Þ cS þm3dS−m2hS þ m2 þ 1ð Þ hS−mdSð Þ− mþ 1ð ÞcS
m2 þ 1

� �2

−r2S ¼ 0

ð30Þ
Recognizing r2S = h2S + d2S and that m2 + 1 > 0 for all

β > -45o, and solving for cS from the numerator of the
resulting expression, we finally obtain a quadratic
equation:

cS ¼ −B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AK

p

2A
ð31Þ

where the coefficients are

A ¼ m4 � 2m3 þm2−2mþ 1 ð32Þ
B ¼ 2 m−m2

� �
m2dS−mhS
� �þ m−1ð Þ hS−mdSð Þ� �

ð33Þ
K ¼ m4d2

s − 2m3dShS − 2mdShS − d2
s ð34Þ

To obtain the distance from surface S to the orthog-
onal optical axis, we identify from Fig. 4:

eS ¼ cS � rS ð35Þ
which is our solution to the problem. Note that the

positive root of (32) is the only meaningful solution to
our problem. In the trivial case where β = 0o, it is

obvious that eS = hS, and in this problem, β > -45o, since
the distance eT from the dummy surface D to the trailing
surface T cannot be negative; also, β < 45o, since the
light path from the orthogonal path cannot pass through
surface S.
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