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Abstract

Single photon or biphoton states propagating in optical fibers or in free space are affected by random perturbations
and imperfections that disturb the information encoded in such states and accordingly quantum key distribution is
prevented. We propose three different systems for autocompensating such random perturbations and imperfections
when a measurement-device-independent protocol is used. These systems correspond to different optical fibers
intended for space division multiplexing and supporting collinear modes, polarization modes or codirectional modes
such as few-mode optical fibers and multicore optical fibers. Accordingly, we propose different Bell-states
measurement devices located at Charlie system and present simulations that confirm the importance of
autocompensation. Moreover, these types of optical fibers allow the use of several transmission channels, which
compensates the reduction of the bit rate due to losses.
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Autocompensation, Integrated quantum optics

Introduction
Over the last few years, space division multiplexing has
been proposed to further increase the data bandwidth
in optical communications; thus, high interest has arisen
about new optical fibers such as few-mode fibers (FMFs)
[1] and multicore fibers (MCFs) [2]. Consequently, the
interest in the implementation of quantum cryptography
in these new optical fibers has remarkably increased in
the last few years [3–6]. Quantum cryptography states
that the laws of quantum mechanics, if correct, guarantee
unconditional security of communications under quan-
tum key distribution protocols [7, 8]. At least, this is what
theory teaches us. When it comes to real-life implemen-
tations, however, a number of problems arise that put
such assertion in jeopardy. This is due to the fact that
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devices used in Quantum Key Distribution (QKD) proto-
cols are imperfect in reality. Such imperfections open a
backdoor for an eavesdropper (Eve) to obtain information
that ideally would be perfectly concealed.
One of the most important problems corresponds to the

detector side channel attacks. They are related to the fact
that the detector apparatuses Alice and/or Bob use may be
flawed, and that might give Eve an opportunity to extract
secret information about the key without Alice and Bob
knowing [9–11].
Fortunately for the security of communications, a quite

good solution has been developed, that is, Measurement-
Device-Independent quantum key distribution (MDI-
QKD) [12]. This idea consists in making use of entangle-
ment in such a way that the whole measurement process
is treated like a black box. Traditionally, in QKD, the
measurement is done by the partner sitting at the end
of the line (normally Bob). In this case, a third party,
called Charlie, makes the measurement. He performs a
Bell measurement on the two-qubit state Alice and Bob
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send him. The key is that Charlie may be untrusted. He
can be an eavesdropper himself. Charlie is only asked to
report whether he obtained a successful or an unsuccess-
ful result from his measurement, and he can of course
lie. May the detectors he uses be flawed and/or may he
be Eve in disguise: it does not matter. The detection pro-
cess is a black box, what happens inside has no relevance,
only what Charlie reports in relation to what quantum
state Alice and Bob sent. To this last part, usual defence
methods need to be applied (i.e. decoy states [13], etc).
Thus, Alice and Bob can establish a secret key without the
need to take into account detector side channel attacks.
The main downside of this solution is that the key rate is
small [14] compared to standard protocols. Also, sources
need to be trusted and state preparation has to be almost
perfect. There also other practical problems to overcome
[15]. But, in all, among the proposals that inherently pro-
tect against side-channel attacks, MDI-QKD is the one of
greater feasibility [8, 12].
Another class of practical problems in quantum (and

classical) communications are the perturbations that pho-
tons suffer when they propagate along optical fibers.
Certain perturbations and also imperfections in practical
optical fibers randomly scramble the information encoded
in photons, impairing QKD. When the link is very short
this posses no real problem, but in real-life quantum com-
munications links are required to be about a few hundreds
of kilometres, and the aim is precisely to increase this
limit. An example of such pertubations is the undesired
birefringence most real-life fibers have, unless they are
polarization-maintaining fibers [16], which have a high
but tailored built-in birefringence, so as to preserve two
particular linear polarization states of the travelling pho-
tons although the relative phase remains random. Infor-
mation may be encoded in the photons polarization, and
undesired birefringence alters the state of polarization
unpredictably. In other words, such birefringence cannot
be completely characterized, causing a random perturba-
tion. Then, if polarization changes randomly when the
photons are on the fly, no key can be established. On
the other hand, in optical fibers intended for space divi-
sion multiplexing, spatial perturbations, due to mechan-
ical causes, thermal causes and so on, can also give rise
to undesired and unpredictable couplings between spatial
modes (modal crosstalk) with the same effect of preclud-
ing QKD. This last case is acute when one deals with
many spatial modes and multicore optical fibers (MCFs)
and even few-mode fibers (FMFs). Moreover, these spatial
perturbations can also change with time although slowly
with respect to transmission speed. Likewise, imperfec-
tions in optical fibers can also give rise to mode coupling.
Solutions to such problems have been proposed in QKD
protocols by the so-called autocompensating cryptogra-
phy, thus, autocompensating QKD methods have been

proposed for single photon states excited in polarization
and/or spatial modes [17, 18]. Autocompensating cryp-
tography consists in taking the travelling light and make it
go through some determinate optical elements that alter
its state in such a way that the perturbations become
harmless. The price to pay is that light has to travel back-
and-forth between the two ends of the line, that is, it has to
travel at least two times the same distance. This enhances
distance-related drawbacks like fiber losses. This won’t be
a problem, nonetheless, when we compute the key rate,
since if we use coherent states they are only attenuated
at Alice and Bob’s sites, that is, the weak coherent states
do not cover two times the distance between Alice/Bob
and Charlie. Note that autocompensation does not elimi-
nate or make any attempt to eliminate such perturbations,
but their effects, restoring the photonic quantum state
that was originally launched. At this point we must stress
that in optical fibers for space division multiplexing sev-
eral channels could be used, thus reducing the effects
associated to fiber losses. Another solution exists, con-
sisting in continuously monitoring the properties of the
communication links like optical fibers, correcting in real
time the undesired modifications the propagating state
can undergo as for example relative phases, although cou-
pling effects would be much more difficult to correct [19]
and moreover, a complememtary light signal is required
in order to measure the perturbations together with a
complex electronic processing device.
In this work, we propose an Autocompensating MDI-

QKD (A-MDI-QKD) protocol, which is based on bipho-
ton states. We will do it in three ways, each one cor-
responding to a different photonic encoding: collinear
modes, polarization modes and codirectional modes. By
collinear modes we refer to modes propagating along the
same direction, travelling in the same core of a fiber,
such as Hermite-Gauss (HG) modes. Few mode opti-
cal fibers are the transmission lines for collinear modes,
although optical communication in free space can make
use of this kind of spatial modes. We will distinguish
between polarization-maintaining few mode fibers (PM-
FMFs) [16], where two particular linear polarizations
are maintained for long distances, and space-maintaining
few-mode fibers (SM-FMFs), where spatial modes are
maintained decoupled for long distances [20]. By codi-
rectional modes, we refer to modes travelling along dif-
ferent fibers or different cores of the same fiber. This
kind of modes are directly compatible with integrated
optics by using photonic lanterns or proper optical con-
nectors. As commented, nowadays, research in MCFs
is an active field, since MCFs can be used to increase
to a large extent the communication capacities of fiber
links. Moreover, this makes the adaptability to current
(and future) systems a lot easier, with the possibility of
using the available infrastructure to set up A-MDI-QKD
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protocols following a plug-and-play philosophy [21]. On
the other hand, scalability, compactness, robustness an so
on, are well-known attributes of optical integrated tech-
nologies [22]. Importantly, integrated devices, together
with MCFs [3, 23, 24], open the possibility, in a very
clear way, to extend the protocol to N dimensions, which
increases security. At this point, we must also stress that
the use of mode converters based on photonic lanterns
[25] or multi-plane interfaces [26] between FMFs and
channel waveguide modes also allows to use integrated
optical components because collinear modes can be con-
verted into codirectional modes, although in this work,
for the sake of completeness, bulk components will also
be used. The same interface procedure can be applied
to polarization modes. Consequently, we will use four
modes where two photons are excited, that is, two-qubits.
Besides, as the algebraic mechanism to obtain autocom-
pensation is different for each encoding, then we will
deal with each case separately. Therefore, the plan of this
paper is as follows. We start by proposing a full A-MDI-
QKD optical system for collinear modes coming from
PM-FMFs, which can provide several spatial channels for
QKD because polarization is maintained across a long
distance. Next, a A-MDI-QKD optical system for polar-
ization modes of SM-FMFs is presented. Moreover, as
in the spatial case it can also provide several polariza-
tion QKD channels because spatial modes are maintained
decoupled for a long distance. Finally, we propose an

A-MDI-QKD optical system for codirectional modes
coming fromMCFs by using integrated optics to measure
the Bell states. The main conclusions are summarized at
the end.

A-MDI-QKD systemwith collinear modes
As commented, for this case, we encode information
in two collinear spatial modes of two PM-FMFs linking
Alice-Charlie and Bob-Charlie as shown in Fig. 1. This
kind of fibers have a birrefringence which is high enough
to separate polarization modes, however, spatial modes
can undergo coupling. For instance in this kind of fibers,
there will be mode coupling between LP(e)

11H and LP(o)
11H

modes, and LP(e)
11V and LP(o)

11V modes [16], with (e) indicat-
ing even mode (cosϕ) and (o) odd mode (sinϕ). However,
polarization mode coupling is negligible. Obviously, each
polarization can be considered as a potentially useful
channel for QKD, therefore, we could use several inde-
pendent channels to perform QKD, which would increase
the bit rate and therefore would reduce the loss effects
and larger distances would be achieved. For example, let
us consider without loss of generality that the quantum
states are excited in the particular modes LP(e)

11H ≡ X and
LP(o)

11H ≡ Y , that is, in horizontal (X) and vertical (Y)
Hermite-Gaussian (HG) modes polarized, for instance,
along the horizontal direction. Single photon states are
denoted as |1X〉 and |1Y 〉. The vertical polarization direc-

Fig. 1 A-MDI-QKD system for collinear modes. Light comes from Charlie along PM-FMF optical fibers. States are delayed by OFDs. They arrive at
Alice’s and Bob’s laboratories, where they travel along local loops equipped with autocompensating devices (AD) and phase modulators. Local loop
structure is symbolized by a loop with AD inside. Light returns to Charlie, and optical circulators (OC) direct the photons towards a Bell-state
measurement apparatus composed by a BS and two MZIs working as mode sorters, together with the corresponding detectors
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tion could be used as a second channel. More channels
could be considered if other modes are used as, for
example, LP(e)

21H and LP(o)
21H modes, and LP(e)

21V and LP(o)
21V

modes [16].
The A-MDI-QKD system is shown in Fig. 1. As auto-

compensation requires light to go back-and-forth, then
the light source must be located at Charlie. Such source
can be a SPDC or two independent lasers emitting WCPs
(weak coherent pulses) and ensuring photon indistin-
guishability. Accordingly, Charlie prepares the following
state( |1X〉 + |1Y 〉√

2

)
a

⊗
( |1X〉 + |1Y 〉√

2

)
b

(1)

and sends each part of it to Alice and Bob. Indexes a and
b stand for Alice’s and Bob’s paths, respectively. If WCPs
are used then decoy states are also required in order to
prevent photon number splitting (PNS) attacks. We group
whatever source Charlie uses to generate those states
under the name Initial States Generator (ISG). Next, light
reaches Charlie’s optical circulators (OC), which direct
the light towards Alice’s and Bob’s sites. After the circula-
tors optical fiber delay (OFD) devices are placed to delay
states excited in mode Y a time τ with respect to states
excited in mode X, meaning that we will have |1X〉 and
|1Yτ 〉. The OFDs (see Fig. 2) consist on a Mach-Zehnder
interferometer (MZI) with a Dove prism (DP) in one of its
arms. They work in the following way.When the quantum
state reaches the first beam splitter (BS), one part of it goes
into the horizontal (h) path and another on the vertical (v)
path. Then, the Dove prism in the vertical path introduces
the following transformation on the modes

Dϑ =
(
cos 2ϑ sin 2ϑ
sin 2ϑ − cos 2ϑ

)
, (2)

where ϑ is the angle in which the normal of the prism
is rotated. This means that if we have states |1X〉 and
|1Y 〉 as input, the output will be a |1X′ 〉 mode given by
the linear combination |1X′ 〉 = cos 2ϑ |1X〉 + sin 2ϑ |1Y 〉,
and analogously for |1Y 〉. Setting ϑ = 0 we obtain the
transformations |1X′ 〉 = |1X〉 and |1Y ′ 〉 = −|1Y 〉. So,
for an input 1√

2 (|1hX〉 + |1hY 〉) at the horizontal input of
the first BS, the emergent state after the second BS is
1√
2 (|1vX〉 − |1hY 〉). This means that the X mode exits the

vertical port of the second BS and is directed towards
Alice (and Bob), while the Y mode exits the horizontal
port, and is directed towards an external optical path that
feeds the vertical port of the first BS. The result is that
the Y mode gets delayed with respect to the X mode, by a
quantity we call τ . This delay will allow Alice and Bob to
introduce relative phases between X and Y modes. Thus,
the state after the OFDs is

|Le〉 =
( |1X〉 + |1Yτ 〉√

2

)
a

⊗
( |1X〉 + |1Yτ 〉√

2

)
b
. (3)

Fig. 2 Scheme of a MZI operating with HG modes. A Mach-Zehnder
Interferometer together with a Dove prism in one of its arms operates
as a HGmode sorter. At the output of the last BS, the X mode emerges
on the v path and the Y mode on the h path. This modes can be either
redirected to detectors, as in Figure 1, to project onto Bell states, or
the Y mode can be redirected into a external path (dashed line),
introducing a delay τ between modes, that is, |1X 〉 and |1Yτ 〉. Thus,
such MZIs can be used as ’polarizing’ beam splitters (thinking of X and
Y as polarizations) for Bell-state detection as well as OFD devices

Now, photons enter (and then exit) optical fiber circuits
at Alice and Bob’s sites trough optical circulators. Note
that Alice and Bob’s laboratories need to be well shielded
from eavesdroppers. No information should leak out.
In these circuits, autocompensating devices are located,
together with phase modulators by which Alice and Bob
encode their bits. Electro-optical phase shifters imple-
ment this task. Alice and Bob introduce a relative phase
eiθ between |1X〉 and |1Y 〉, randomly chosen from the set
θ = {−π/2, 0,π/2,π}, in order to encode information in
one of the two followingmutually unbiased bases (MUBs),
that is, diagonal and circular bases,

BD :
{
|1D〉 = |1X〉 + |1Y 〉√

2
, |1A〉 = |1X〉 − |1Y 〉√

2

}
, (4)

BC :
{
|1L〉 = |1X〉 + i|1Y 〉√

2
, |1R〉 = |1X〉 − i|1Y 〉√

2

}
. (5)

It is worth writing the transformation between absorption
operators â in both bases, that is

â(
D
A

) = 1√
2

(
âX ± âY

)
; â

(
L
R )

= 1√
2

(
âX ∓ iâY

)
. (6)

Note again that autocompensation requires light to fol-
low a closed path. As in MDI-QKD the photons end at
Charlie’s site, if we add autocompensation, light needs to
start its way at Charlie’s site too. Charlie provides the input
light and Alice and Bob modulate its phase in order to
generate quantum states on which encode their bits. It
is clear why we can not use the usual basis {|1X〉, |1Y 〉}
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(socalled the Z or rectilinear basis and used normally in
MDI-QKD protocol [12]) because it can not be converted
in any other basis by phase modulation. Obviously, rota-
tions can be used to change basis, but, in that case, the
autocompensating transformation we will describe after-
wards would become useless, hence autocompensation
would not work. We will ignore the perturbations for a
while to explain the measurement process, then we will
deal with the autocompensation method.

Bell-state measurement device
After exiting the fiber circuits, light goes back to Charlie.
At Charlie’s circulators light is directed towards a Bell-
state measurement device. This device is composed by a
beam splitter (BS) plus two MZI identical to the MZIs
present above in Fig. 2 (except that they lack the external
optical path for OFD). The BS acts the usual way, entan-
gling photons and producing Bell states, which will be
postselected afterwards. As analyzed, the MZIs act as a
polarizing beam splitter would do in the polarization case,
that is, they sort X and Y modes, each one in one dif-
ferent port, as we have seen. Then, photons are directed
towards detectors DaX ,DaY ,DbX ,DbY and Bell states will
be measured. In detail, the working principle of this Bell-
state measurement apparatus is the following. Let’s call
the input ports of the BS after the OCs in Fig. 1 as ao and
bo, and the output ports as a and b. Now, assume that such
BS is of the type that induces the following transformation
between the input and output modes, with corresponding
photon emission operators â†ao, â

†
bo, â

†
a, â

†
b:

â†ao = â†a + iâ†b√
2

; â†bo = iâ†a + â†b√
2

. (7)

Now, when Alice and Bob choose the same basis (else the
data is discarded), there are two classes of input states.
The first one is when Alice and Bob prepare the same state
and the second one is when they prepare different states.
Consider the first case of a diagonal basis. Let us consider,
for instance, that the state that reaches the BS is

|Lnf 〉 = |1aoD〉|1boD〉. (8)

This state corresponds to the case so-called not bit-flip
case. This state can be rewritten, by taking into account
the transformation given by Eq. (7), as follows

|Lnf 〉 = i
2

(
â†2aD + â†2bD

)
|00〉. (9)

Next, by using themeasurementmodesX and Y we obtain

|Lnf 〉 = i
4

{(
â†aX + â†aY

)2 +
(
â†bX + â†bY

)2} |00〉. (10)

Note that by one hand we obtain the following state

|Lnc〉 =
√
2
4

(|2aX〉 + |2aY 〉 + |2bX〉 + |2bY 〉), (11)

that is, we detect the two photons in only one detector,
that is, there are no coincidences with a probability equal
to 1/2. On the other hand, we also obtain with a probabil-
ity equal to 1/2, the following Bell state |�+〉 (with respect
to the detectors a and b),

|Lc〉 =
√
2
2

|�+〉 =
√
2
2

(|1aX1aY 〉 + |1bX1bY 〉)√
2

, (12)

meaning that there are coincidences in the same output,
a or b, that is, there will be a simultaneous click between
the same pair of detectors, either DaX together with DaY
or DbX together with DbY . However, if the input state is,
for instance,

|Lf 〉 = |1aoD〉|1boA〉, (13)

which corresponds to a bit-flip, then by taking into
account the transformation given by Eq. (7), the state can
be rewritten as

|L〉 = i
2

(
â†aD + iâ†bD

) (
iâ†aA + â†bA

)
|00〉. (14)

By following the same procedure as in the above case, we
obtain both states corresponding to non coincidences and
the following Bell state, with a probability equal to 1/2,

|Lc〉 =
√
2
2

|�−〉 =
√
2
2

(|1aX1bY 〉 − |1bX1aY 〉)√
2

, (15)

that is, coincident clicks between DaX and DbY or DaY
and DbX , are obtained, which is precisely the |�−〉 Bell
state. Now, each photon emerges in a different port. We
must stress that the non coincidences can be used to
calibrate the system, that is, we must detect the same
amount of coincidences and non coincidences to make
sure that the system is aligned and adjusted and there-
fore the protocol can be implemented. However, we still
need to eliminate the effect of possible perturbations by
an autocompensating method.

Autocompensation method
As commented, we encode information in two collinear
spatial modes propagating in a PM-FMF along the z-
direction, in particular, LP(e)

11H ≡ X and LP(o)
11H ≡ Y .

We will describe in detail the autocompensation mech-
anism that enables to get rid of perturbations that arise
when such modes propagate along optical fibers. The aim
of autocompensation is that the photonic state emerges
restored after it has travelled the path, back and forth,
between the starting point and the endpoint of the
fiber link. Intrinsic imperfections of dielectric permitivitty
or perturbations P(x, y) produced by mechanical and/or
thermal causes give rise to modal coupling between opti-
cal modes. The two-mode coupling coefficient is given by

κs =
∫

e1(x, y)P(x, y)e2(x, y)dxdy, (16)
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where e1(x, y) and e2(x, y) are themode amplitudes. P(x, y)
is a random perturbation, which can regarded as z-
invariant in a short propagation distance z. Therefore
the total perturbation is a sequence of q perturbations
with different coupling coefficients. Each perturbation
k = 1, ...q can be described by an asynchronous modal
coupling, that is, the formal solution for the absorption
operators is given by(

âk1
âk2

)
= Sk

(
âk01
âk02

)
=

(
Ak iBk
iBk A∗

k

) (
âk01
âk02

)
. (17)

Now, we can model the perturbations along the fiber
as a discrete number q of perturbations, acting on the
absorption operators. Moreover, since we are dealing with
single-photon states in each link, it can be shown that the
solutions to the Heisenberg equations for spatial propaga-
tion apply directly to photonic states [27]. Thus, if |ψ〉 is a
photonic state, then |ψ(z)〉 = S|ψ(0)〉, where S is the total
matrix S = Sq, Sq−1...S2S1.
On the other hand, the coupling coefficients remain

invariant under backpropagation, that is, by defining a
new reference system given, for instance, by (−X)Y (−Z),
the original one being given by XYZ, it is easy to check
that κs does not change under backpropagation, therefore,
the matrices Sk do not change under backpropagation.
We write down explicitly the transformation the pho-
tonic states would experience when going back-and-forth
along the optical fiber. When going from Charlie to Alice
(and Bob), we have T→ = Sq...S1, and, when going back
from Alice (Bob) to Charlie, we have again T← = S1...Sq.
Between these two operations, we have to put the right
transformation, implemented by the adequate autocom-
pensating devices, so that we restore the original photonic
state. The full transformation the light experiences on a
roundtrip is

T←MT→ = S1...SqMSq...S1, (18)

where M represents the operation of the autocompensat-
ing devices. It is easy to check that M = iσy, with σy the
second Pauli matrix, restore the state, that is

SkMSk =
(
Ak iBk
iBk A∗

k

) (
0 1

−1 0

) (
Ak iBk
iBk A∗

k

)
, (19)

then SkMSk = M. This means that the state of the emer-
gent light, back at Charlie’s circulators, has been properly
restored, albeit a deterministic swapping transformation
M = iσy, which we can account for.
Next, we must answer the question of how to imple-

ment the operation M = iσy with HG modes. This can
be done by using two cylindrical lens converters (CLCs)
[28] and a Dove prism with ϑ = π/4, plus a phase shifter
(PS) introducing a global phase φ = −π/2, as shown in
Fig. 3. The Dove prism is sandwiched between the CLCs
[29]. The CLCs rotate the X and Y modes by phases

Fig. 3 Autocompensating devices for collinear modes and state
generation by phase modulation. At Alice’s and Bob’s sites local loops
equipped with autocompensating devices and phase modulators are
located. The combination of two CLCs and a Dove prism, each one
with a determinate orientation, implements the matrix −σy , which
suffices to autocompensate for perturbations due to modal coupling.
The phase modulator introduces a phase θ by which to send photons
back to Charlie in one of the two MUBsB1 andB2 described above

±π/2, respectively. They convert Hermite-Gauss modes
into Laguerre-Gauss ones. In matrix form, this can be
written as

CLC±π/2 =
(
1 0
0 ±i

)
. (20)

Now, the Dove prism is rotated π/4, therefore, from (2),
it implements the operation Dπ/4 = σx. Therefore, we
obtain the desired transformation,

M = e−iπ/2CLC−π/2Dπ/4CLCπ/2 =
(

0 1
−1 0

)
. (21)

We left some more nuances along the road that deserve
however more attention. First of all, when we wrote (18),
it may seem that we forgot about the phase gate Alice
and Bob apply in order to obtain the different quantum
states in which encode their bits. However, we must recall
that at Alice and Bob systems the states are excited in
retarded modes as given by Eq. (3). In other words, auto-
compensation is for the retarded states |1X〉 and |1Yτ 〉
in an individualized fashion. The transformation U(θ) =
diag

(
1, eiθ

)
implementing the phase modulation acts on

the above states, in particular on |1Yτ 〉. Another sub-
tlety is that the fiber circuits, where the autocompensation
devices and phase modulators are located, have a very
small length. Note that this path is never autocompen-
sated but is however so small that is contribution to a
perturbation of the photonic states is negligible. They are
local fiber loops. We remark that this will be common
to all three encodings described in this paper. Moreover,
we must note that the delay introduced in OFD when the
photons come back cancels the delay introduced at the
beginning. This is because the Dove-π/4 prism formally
swaps modes X and Y but does not swap their identity.
This implies that, if when the photons first went through
the OFD, the X mode went ahead of Y, then after the
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Dove-π/4 prism, it is the Y mode who goes ahead. Then,
again at the OFD device, the Y gets retarded and waits for
the X mode so that they reach Charlie’s Bell state appa-
ratus exactly at the same time. This can be calibrated by
using the HOM states that are produced at the BS.
Finally, note that we are saying that modes coming from

Alice’s and modes coming from Bob’s reach the Bell-state
projector at the same time, but separately, in the sense
that the X mode of Alice (Bob) and the Y mode of Alice
(Bob) become synchronous again once they have trav-
elled the OFD twice, but there is still needed that Alice’s
modes and Bob’s modes reach the measurement appa-
ratus at the same time. For that, their paths need to be
adjusted to avoid mismatch [15]. Alternatively, if WCPs
are used, the pulses generated at the ISG could be delayed
such that they return simultaneously. This calibration task
is simpler than in a standard configuration as Charlie can
perform it without the involvement of Alice or Bob.

A-MDI-QKD systemwith polarizationmodes
For the sake of completeness, we describe the polariza-
tion encoding scheme. Polarization is perhaps the best
known and most used of all possible photonic encodings,
and A-MDI schemes involving it have already been pro-
posed [30]. Still, we describe it here for two reasons in
addition to the mentioned completeness. The first one
is because we do it using a different autocompensating
device (a closed cycle with a HWP) to the one used
in reference [30] where Faraday mirrors are used. The

second, and most important, is because in SM-FMF for
space division multiplexing, as for example an elliptical
FMFs, spatial modes are separated but polarizationmodes
are close [20]. Therefore in these optical fibers we can use
these separated space modes as different channels with
two polarization modes to perform QKD. Then, as in the
above case, we could use several independent channels to
carry out QKD, which would increase the bit rate and thus
would reduce the loss effects and larger distances would
be achieved in QKD.
The basic scheme of the AD subystem is shown in Fig. 4.

A biphoton source or two independent lasers producing
WCP is required at Charlie’s site, together with decoy
states. While the working principle is the same, there
will be a number of changes on the optical devices used.
Charlie sends the state

( |1H〉 + |1V 〉√
2

)
a

⊗
( |1H〉 + |1V 〉√

2

)
b
, (22)

where again a stands for Alice’s path and b for Bob’s path.
Note that the formal study is identical to the case of spatial
modes X and Y but with the formal changes X → H and
Y → V . Therefore, the implementation of theMDI proto-
col is made in the same way and consequently the results
found above can be easily used for polarization. However,
the autocompensation process will be different. As in the
spatial mode case optical fiber delays are again required.

Fig. 4 A-MDI-QKD system for polarization encoding. Charlies generates suitable polarization states and launches them towards Alice and Bob. They
autocompensate and modulate the relative phase between the horizontal and vertical components so as to encode their information. Light comes
back to Charlie. Circulators redirect it to a polarization Bell-state analyser (Innsbruck scheme)
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Fig. 5 a Optical Fiber Delay (OFD) by using a PBS. b Autocompensating
device and phase modulator for polarization encoding: photons
coming from Charlie enter the local loops at Alice’s and Bob’s sites.
There, a HWP rotated 45◦ degrees implement the appropriate
autocompensating transformation. Next relative phases are
introduced for state generation

This can be implemented for this case with the aid of a
PBS [29], as shown in Fig. 5a. As we will see, the autocom-
pensating device again implements a swapping operation
required to cancel such delay so that states reach Charlie’s
Bell-state analyzer at the same time. Light goes towards
Alice’s and Bob’s sites, each one equipped with autocom-
pensating devices. Photons enter optical fiber circuits at
Alice and Bob’s sites trough optical circulators. By means
of electro-optical phase shifters, Alice and Bob encode
their bits. As before, Alice and Bob introduce a relative
phase θ between |1H〉 and |1V 〉, randomly picked from the
set θ = {−π/2, 0,π/2,π}, in order to encode information
in one of the twoMUBs (diagonal or σx and circular or σy)
.
After exiting the optical fiber circuits at Alice and Bob’s

sites, light returns to Charlie. At Charlie’s circulators light
is directed towards a linear optics system which imple-
ments a Bell-state measurement (Innsbruck scheme). At
the beam-splitter BS Bell states are produced. Afterwards,
two polarizing beam-splitters (PBS) with their corre-
sponding detectors DaH , DaV and DbH , DbV project into
the individual polarizations. In particular, we obtain the
following Bell state for the not bit-flip case

|�+〉 = 1√
2
(|1aH1aV 〉 + |1bH1bV 〉), (23)

meaning that there are coincidences in the same output,
a or b, that is,there will be a a simultaneous click between
the same pair of detectors, either DaH together with DaV
or DbH together with DbV . However, for bit-flip cases we
obtain

|�−〉 = 1√
2
(|1aH1bV 〉 − |1bH1aV 〉), (24)

that is, coincident clicks between DaH and DbV or DbH
and DaV , are obtained.

Autocompensation method
We assume that the optical fiber has birefringency pertur-
bations acting on polarization states. Moreover, as com-
mented this perturbation can vary in time, but slowly.
Such perturbation can be also represented by the matrix
Sk given by Eq. (17). In fact, it is also an asynchronous
coupling but with polarization modes coupled by bire-
fringence. However in this case the coupling coefficient
between polarization modes is given by

κp =
∫

eH(x, y)P(x, y)eV (x, y)dxdy. (25)

Then under backpropagation, that is, by defining a new
reference system given, for instance, by (−X)Y (−Z), the
original one being given by XYZ, polarization modes must
be changed, that is, H → −H , that is, eH(x, y) →
−eH(x, y), and accordingly the coupling coefficient κp
changes its sign. The main consequence is that matrices
S′
k for backpropagation also change, that is,

S′
k =

(
Ak −iBk

−iBk A∗
k

)
. (26)

These results can easily checked by analysing the matrix
of particular wave-plate for backpropagation, for instance,
a HWP forming an angle γ with respect to the axis X, that
is,

HWPγ =
( −i cos 2γ −i sin 2γ

−i sin 2γ i cos 2γ

)
, (27)

where under backpropagation the angle γ becomes −γ ,
therefore sin 2γ → − sin 2γ as established by Eq. (26). On
the other hand, it is easy to check that autocompensation
is achieved by a matrix σx, which can be implemented by
a HWP rotated π/4 degrees together with a global phase
eiπ/2, that is,

M′ = eiπ/2HWPπ/4 =
(
0 1
1 0

)
, (28)

therefore, by taking into account the last birefringent
perturbation q we have(

Aq −iBq
−iBq A∗

q

) (
0 1
1 0

) (
Aq iBq
iBq A∗

q

)
= M′, (29)

and so on, then S1...S′
qM′Sq...S1 = M′. This means that the

state of the emergent light, back at Charlie’s circulators,
has been properly restored, albeit a deterministic swap-
ping transformation M′ = σx, which we can account for.
In Fig. 5b the implementation of the autocompensation is
shown. It is made by using a HWPπ/4 and an optical cir-
culator to get a closed circuit. The phase shifter θ used
to generate quantum states is also shown. In short, if we
take a input polarization state |L〉, after it has traveled back
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and forth between Charlie and Alice (Charlie and Bob),
it emerges as σx|L〉, that is, unaltered. The unpredictable
changes it would have experienced if it were not for the
autocompensating device have been removed. We must
note that the usual rectilinear (Z) basis for MDI protocol
could not be used for autocompensating purposes because
we would have to rotate the state in order to generate dif-
ferent bits, for instance |1H〉 → |1V 〉, however, rotations
are not autocompensated.

A-MDI-QKD systemwith codirectional modes
Space division multiplexing can be also implemented by
using multicore fibers (MCFs), that is, by using codi-
rectional modes, therefore, we must also consider these
optical fibers for QKD.Wemust stress that there are many
configurations of MCFs [31], that is, different groupings
of the cores as for example at the vertices of triangle, a
square, or even grouping in pairs [32]. These groupings
are enough separated to consider that nonmodal coupling
is produced, however, groups of cores can undergo modal
coupling and then are processed by MIMO (Multiple-
input Multiple-output) technique. The goal of the groups
of cores is to enlarge the transmission capacity by increas-
ing the density of cores. In this work we consider grouping
in pairs of single-mode cores, and propose a method
for autocompensating the modal coupling between the
corresponding modes of two cores [32]. Moreover, an
integrated device to measure the Bell states is also pro-
posed. We must stress that sometimes the mentioned
cores also are far enough apart and therefore only relative
phases are compensated, however, the proposed method
can also compensate some possible residual coupling, in
fact, mechanical and thermal perturbations can induce
mode coupling. The matrix describing an arbitrary per-
turbation k(= 1, ..., q) is also given by the matrix Sk shown
in Eq. (17) where now the modes e1 and e2 correspond to
the fundamental modes of the single-mode cores. Finally,
we must stress that polarization is ignored because it is
assumed that due to the proximity between cores the
polarization changes are common to both cores, that is, a
single photon state can be represented as follows

|L〉 = c1|11〉 + c2|12〉, |1j〉 = cH |1jH〉 + cV |1jV 〉, (30)

with j = 1, 2. This indicates that the polarization state is
the same for both cores. From a classical point of view it
means that the total optical field can be factorized as e =
(c1e1 + c2e2)u, with u = (cHuH + cVuV ) an unpredectible
polarization unitary vector but non relevant to spatial
coupling. In short, the autocompensating method consists
of implementing once more the matrix M = iσy used in
collinear modes. However, we must stress that unlike of
a single-photon QKD we have two photons coming from
Alice and Bob, therefore a polarization autocompensating
is also required. Such autocompensation will be obtained

as indicated in the case of polarization modes, that is, by a
HWP rotated π/4.
On the other hand, the way to encode information obeys

the following spatial scheme: if the photon travels path 1
(core 1) that corresponds to bit 0 and if it travels path 2
(core 2) that would correspond to bit 1. The result is that
a photon can propagate in a superposition of path 1 and
path 2. Note that this corresponds to the usual dual-rail
logic. Formally, |11〉 → path 1 and |12〉 → path 2. The
experimental implementation parallels that of the previ-
ous collinear case, as seen in Fig. 6. There are however
a number of changes, especially regarding both the auto-
compensating process and the Bell-state measurement
device (BMD), which in this case is implemented by a opti-
cal integrated circuit. Now, each state travels its own path,
there being two paths for Alice and two paths for Bob.
Each path corresponds by the above encoding to a quan-
tum state. If we label Alice’s paths by a and Bob’s paths by
b, we have, for Alice, paths a1, a2 and b1, b2 for Bob.
In an analogous fashion with respect to the collinear

case, Charlie sends a pair of qubits from his ISG, using
either a single-photon source or WCPs (decoy states are
also required, as usual, for protection against PNS attacks,
ifWCPs are used).We need to introduce anOFD device in
order to introduce a delay between the fundamental states
|11〉 and |12〉, for the same reason as before. An example
of such a device is shown in Fig. 7. It consists on a pair
of photonic lanterns (PL) that extract the modes from the
MCF into two parallel SMFs. In one of them, a fiber loop
producing a delay τ is located, as in the MZI. Another
photonic lantern takes the photons and puts them into the
two cores of the MCF again. Therefore, after the OFDs we
have the biphoton state( |11〉 + |12τ 〉√

2

)
a

⊗
( |11〉 + |12τ 〉√

2

)
b
. (31)

Light travels along two cores of an MCF to meet Alice’s
and Bob’s laboratories. There, local loops contain auto-
compensating devices and phase modulators. Optical cir-
culators are also required for the local loops of Alice and
Bob and to redirect photons to the Bell-state measure-
ment apparatus. Note that circulators do notmix the paths
1 and 2. Although we draw only one circulator, a pair
of circulators each one operating in one path is to be
understood.

Bell-state measurement device
Finally, the light that returns to Charlie is directed to a
Bell-state measurement device. In this case, such device
will be an integrated optical circuit. It is shown in Fig. 8. It
is a four-port device; its input fed with the emerging light
that comes back to Charlie from Alice’s and Bob’s sites.
Synchronous directional couplers (DC) and phase shifters
(PS) implement the required transformations. Finally, at
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Fig. 6 A-MDI-QKD system for codirectional modes. Charlie uses his quantum state generator to send a pair of qubits to each Alice and Bob. After the
delays, photons reach the local loops; in them, autocompensating devices and phase modulators are located. Afterwards, light returns to Charlie’s
six-port OCs, which direct the light towards a optical integrated circuit working as a Bell-state measurement apparatus. We made apparent the fact
that we are using codirectional modes by explicitly showing the two paths of the photons, to be understood as two cores of a MCF as shown,
although the representation of the system is somewhat schematic

the end of each port, a detector is located. The result is
a integrated device that is totally analogous to an Inns-
bruck scheme but on a spatial encoding. Recall that a
general synchronous directional coupler implements the
following transformation

D(α) =
(

cosα i sinα

i sinα cosα

)
. (32)

The value of α = κL can be tailored to our choice
according to the value of the coupling coefficient κ and
the coupling length L. In this case, the integrated device
requires the use of D(π/4) and D(π/2) couplers, along
with a pair of φ = −π/2 phase shifters.

A first D(π/2) coupler is required; it couples inputs
âo2 and b̂o1. Next, two D(π/4) couplers are needed. They
couple, respectively, inputs ao1 and bo2 to intermediate
outputs a′

2 and b′
1, respectively. In terms of the photonic

absorption operators, the implemented transformations
are

aa′2 = âao1; aa′1 = âao2,

a†ao1 = â†a1 + iâ†b1√
2

; â†a′2 = iâ†a1 + â†b1√
2

, (33)

Fig. 7 OFD device for codirectional modes. Light comes from the two cores of a MCF and is directed, via, for example, photonic lanterns, to a pair of
parallel single-mode fibers. In one of them, an optic fiber delay is placed, introducing a delay τ in one of the modes. Photons exit the SMFs through
another PL and they are introduced back into the cores of an MCF
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Fig. 8 Bell-state measurement device for codirectional modes. A four port optical integrated circuit serves as a Bell-state measurement device for
codirectional modes. Photons coming from Charlie’s OC enter the device, where three DCs and two phase shifters implement the suitable
operations. When light reaches the detectors the Bell states |�−〉 and |�+〉 are unambiguously identified, as required by MDI-QKD

â†b′1 = â†a2 + iâ†b2√
2

; â†bo2 = iâ†a2 + â†b2√
2

.

As in the previous cases, we will need suitable bases for
autocompensation purposes. Therefore, we shall use the
following two MUBs

BD :
{
|1D〉 = |11〉 + |12〉√

2
, |1A〉 = |11〉 − |12〉√

2

}
, (34)

BC :
{
|1L〉 = |11〉 + i|12〉√

2
, |1R〉 = |11〉 − i|12〉√

2

}
. (35)

Moreover, the transformation between absorption opera-
tors â in both bases is given by

â(
D
A

) = 1√
2

(
â1 ± â2

)
; â(

L
R

) = 1√
2

(
â1 ∓ iâ2

)
. (36)

Let us assume, for instance, that Alice and Bob prepare
the input state |Lnf 〉 = |1aoD1boD〉 = a†aoDa

†
voD|00〉, then

by taking into account Eq. (36) we obtain the state
1
2
{|1ao11bo1〉+ |1ao11bo2〉+ |1ao21bo1〉+ |1ao21bo2〉}. (37)

With this in hand, together with the transformations in
Eq. (33), we can make a Bell-state analysis of the device
in Fig. 8. Thus, after a long but straightforward calcula-
tion, we will find that the output state is a superposition
of states which do not produce coincidences and states
producing coincidences, that is, |L〉 = |Lnc〉 + |Lc〉, with

|Lnc〉 = i
√
2
4

(|2a1〉 + |2b1〉 + |2a2〉 + |2b1〉), (38)

|Lc〉 = i
2
(|1a11a2〉 + |1b11b2〉) ≡ i

√
2
2

|�+〉. (39)

Now, let us assume that Alice and Bob send back to Char-
lie orthogonal states but in the same (diagonal basis), i.e
the input state is

|Lf 〉 = a†aoDa
†
boA|00〉. (40)

In this case, by identical procedure, we will obtain num-
ber states |2〉 and the following Bell state |�−〉, with
probability 1/2:

|�−〉 = 1√
2
(|1b11a2〉 − |1a11b2〉). (41)

Thus, the optical integrated circuit we propose works
as a Bell-state analyser, as it should, and therefore the
MDI protocol can be implemented. Next, we present the
autocompensating method.

Autocompensating method
As in the collinear case, unpredictable coupling between
modes of adjacent cores of an MCF results in a series of
perturbations Sk , each which can be characterized again
as a SU(2) matrix with the same form as Eq. (17). It repre-
sents, again, the perturbation associated to a short length,
in the z-direction, of the core the photons travel along.
The total matrix is again given by S = SqSq−1...S2S1.
Importantly, these matrices have the same symmetries as
the ones of collinear modes. Consequently, we need to
find a way to implement the transformation M = iσy on
codirectional modes, so that we obtain SkMSk = M for
each perturbation k. There are a number of ways to imple-
ment such transformation. Here, we choose a simple one,
consisting of a directional coupler together with phase
shifter introducing a phase π , placed in a closed circuit, as
shown in Fig. 9. Specifically, for the DC, we set α = π/2,
so from Eq. (32) we obtain

D(κ) = i
(
0 1
1 0

)
. (42)

Next, place a π phase shifter on the path 2 and thus we
obtain the transformation

U(π)D(π/2) = i
(

0 1
−1 0

)
, (43)

which is just what we wanted, up to a harmless global
phaseπ/2. Note that the DC implements a swapping oper-
ation. This means that it exchanges the physical modes
(not their identity), in the sense that the retarded mode
will now follow the path which has no delay, and the
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Fig. 9 Autocompensating devices for codirectional modes and phase modulators. Light enters local loops through OCs. In the local loops, a DC with
κL = π/2 plus a phase shifter introducing a phase π , for instance, in path 2. A HWP rotated π/4 is placed for polarization autocompensation.
Afterwards, a phase modulator is placed, so as to introduce the phase θ and generate quantum states in order for Alice and Bob to encode their bits

advanced mode will be delayed. Thus, modes reach Char-
lie’s Bell-state measurement apparatus at the same time
and autocompensation is achieved. This is analogous to
what happened in the collinear case.
Finally, a HWP is also included to autocompensate

polarization because the perturbations in the optical fiber
linking Alice & Charlie and the optical fiber linking Bob &
Charlie will be different. Obviously, we can take advantage
of this autocompensating polarization technique to use
two different QKD channels, that is, collinear modes in H
and V polarizations (channels), and therefore doubling the
bit rate. We only need to separate the polarization chan-
nels (by using, for instance, PBSs) and to place two BMDs
in the A-MDI-QKD system.

Secret key rate analysis
We shall now perform a secret key rate analysis by pre-
senting a simulation of the impact on the key rate R
when perturbations (cross-talk and phase shifting) are
considered in the optical link and a comparison with the
autocompensated case is shown. We consider cross-talk
between modes of multicore optical fibers. This is a very
interesting case [3–6] because, among other reasons, the
use of this optical link avoids the requirement of align-
ment between the Alice and Bob bases, which is needed
with both collinear modes and polarization modes, in
order to avoid misalignment errors that reduce the secure
key rates. Moreover, simulation will be made with opti-
cal perturbations modelized by a generalized optical error
function Eopt(L), where L is the propagation distance. We
start by recalling that the expression of the lower bound of
the key rate R of a MDI-QKD protocol, in the case of an
infinitely long key and involving the use of decoy states, is
given by [12, 33]

R ≥ QR
11

[
1 − H

(
eD11

)] − QR
μaμb

fH
(
ERμaμb

)
. (44)

Here, QR
11 is the single-photon gain in the rectilinear

(R) or Z basis, BR = {|11〉, |12〉}; eD11 is the single-photon
bit error in the diagonal or X basis BD; QR

μaμb
and ERμaμb

are, respectively, the total gain and total error rate in the
rectilinear basis when signal WCP states of mean photon
numberμa andμb are sent by Alice and Bob, respectively;
f is the error correction inefficiency and H is the binary
Shannon entropy function, given by H(a) = −a log2(a) −
(1− a) log2(1− a). It is assumed that the WCPs are phase
randomized.
Note that for our protocol, because it implements auto-

compensation, we need to encode the states in the diago-
nal and circular bases BD and BC , respectively. However,
the above key rate formula involves terms in the rectilinear
and diagonal bases. We can use this equation, nonethe-
less, if we change the basis just before detection. This is,
we encode in the diagonal and circular bases but we detect
in the rectilinear and diagonal bases, thus Eq. (44) is still
valid in our setting. The final expression of the key rate is
general, and can be used in our case without modification.
In fact, our experimental setting is similar to that of [33].
To change from the BD and BC bases to BD and BR we can
use a simple 3dB synchronous directional coupler, putting
α = π/4 in Eq. (32), so that we obtain, up to global phases,
the following map: D(π/4)|1L〉 → |11〉; D(π/4)|1R〉 →
|12〉; D(π/4)|1D〉 → |1D〉; D(π/4)|1A〉 → |1A〉. We must
stress that the detection devices already presented remain
unchanged.
The multi-photon terms in the key rate formula are

given by [33]

QR
μaμb

= QC + QE , (45)

ERμaμb
= eoptQC + (1 − eopt)QE

QR
μaμb

, (46)
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where QC and QE are given by the following expressions

QC = 2(1 − Pd)2e−μ′/2 [
1 − (1 − Pd)e−ηaμa/2]

×[ 1 − (1 − Pd)e−ηbμb/2] ,
(47)

QE = 2Pd(1 − Pd)2e−μ′/2
[
I0(2ξ) − (1 − Pd)e−μ′/2

]
,

(48)

with Pd the dark count rate of an individual detector
(Y0/2, Y0 the background yield); μ′ = ηaμa + ηbμb, with
ηa and ηb the transmission efficiency of Alice and Bob’s
channels, which we set equal ηa = ηb (symmetric sce-
nario). This is given, in turn, by, ηa,b = 10−αattL/10ηdηC ,
where αatt is the attenuation of the fiber link measured
in dB/km, L the length of the fiber link (Alice/Bob to
Charlie) and ηd and ηC are the detector’s efficiency and
internal transmittance of Charlie’s devices, respectively.
Moreover, ξ is given by ξ = √

μaμbηaηb/2 and I0(ξ)

is the modified Bessel function of the first kind. Finally,
eopt in Eq. (46) is the so-called optical misalignment-error
probability [15, 33]. Importantly, it is the error to be mod-
ified when optical perturbations are considered along the
optical fiber.
On the other hand, in a practical situation, with a finite

number of decoy states, QR
11 and eD11 in Eq. (44) need to be

estimated from the total gains and error rates. In that case,
a good estimation is provided by a decoy setting employ-
ing a signal state, a weak decoy and a vacuum. For that,
we use the bounds for QR

11 = μaμbe−μaμbYR
11 and eD11

obtained by [34]. First of all, we need to reproduce the
total gains and errors in the diagonal basis, from [33], that
is,

QD
μaμb

= 2γ 2[ 1 + 2γ 2 − 4γ I0(ξ) + I0(2ξ)] , (49)

QD
μaμb

EDμaμb
= e0QD

μaμb
− 2(e0 − eopt)γ 2[ I0(2ξ) − 1] ,

(50)

where γ = (1 − Pd)−μ′/4 and e0 = 1/2 is the dark count
error, that is, the random dark count in a detector which is
not expected to fire. Equations (45) to (50) can be particu-
larized for any intensity setting by simply substituting the
intensities’ values. Now, say that Alice sends a signal state
μa, a weak decoy νa and a vacuum. Bob sends μb, νb and
a vacuum. Following [34], definem = min(a, b, c), where

a = μaμ
2
b − νaν

2
b

μaν
2
b + νaμ

2
b
,

b = μ2
aμb − ν2aνb

μ2
aνb + ν2aμb

,

c = μ2
aμ

2
b − ν2aν

2
b

μ2
aν

2
b + ν2aμ

2
b
.

(51)

Furthermore, with β = {R,D}, the following parameters
are defined

gβ
1 = eμbQβ

0μb
+ eμaQβ

μa0 − eνbQβ
0νb − eνaQβ

νa0,

gβ
2 = m

(
eμa+νbQβ

μaνb
− eνbQβ

0νb − eμaQβ
μa0 + Qβ

00

)
,

gβ
3 = m

(
eνa+μbQβ

νaμb
− eμbQβ

0μb
− eνaQβ

νa0 + Qβ
00

)
,

gβ
4 = eνbQβ

0νbE
β
0νb + eνaQβ

νa0E
β
νa0 − Qβ

00E
β
00.

(52)

With these in hand, the lower bound of Yβ
11 and upper

bound of eβ11 are given by [34]

Yβ
11 ≥ gβ

1 + gβ
2 + gβ

3 − eμa+μbQβ
μaμb + eνa+νbQβ

νaνb

νaνb − μaμb + mμaνb + mνaμb
,

(53)

eβ11 ≤ eνa+νbQβ
νaνbE

β
νaνb − gβ

4

νaνbY
β
11

. (54)

Next, by particularizing for β = R in Yβ
11 and for β = D in

eβ11 one can obtain the remaining parameters of Eq. (44).
As commented above, in order to take into account the

perturbations on the fiber producing undesired coupling
(cross-talk) we present the following model for the optical
error, already introduced in [35] for a high-dimensional
QKD analog of the BB84 protocol. The expression of the
optical error is modelled as follows

eopt → Eopt = eopt +
(
1
2

− eopt
) (

1 − e−αoptL) , (55)

where αopt is the perturbation coefficient along the fiber.
Note that this error increases monotonically with L and
it is reduced to eopt when αopt = 0, and it goes to 1/2
for αopt � 1, that is, for large perturbations all states
have the same probability 1/2 to be detected (two states
in each base) and therefore the error will be also equal to
1/2 as it also occurs for e0. In short, Eopt generalizes the
misalignment error eopt above.
To perform a numerical simulation of the key rate, given

by Eq. (44), we use the equations above, substituting eopt
by Eopt , for a series of realistic values of αopt , including
αopt = 0, which is the case when the perturbations have
been successfully autocompensated. Thus, we will use val-
ues of αopt in the interval (0.5 · 10−3, 2 · 10−3) which
are compatible with those ones found in the technical lit-
erature about modal cross-talking due to perturbations
in optical fibers. For instance, for αopt = 2 · 10−3km−1

we obtain an optical error about 1.0 · 10−3 which corre-
sponds approximately to -28 dB. This value is a realistic
one because both spatial and polarization mode cross-
talking in optical fibers can take values around -30 dB or
even larger [36, 37]. In short, cross-talking provides an
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Fig. 10 Secure key rate vs fiber length for different values of αopt . We set αopt = {0, 0.5, 1, 2} · 10−3km−1. Regarding the other parameters, the
following values have been used: f = 1.16, Pd = 3.01 · 10−6, eopt = 1.5%, ηd = 93%, ηC = 0.5, αatt = 0.2 dB/km, μa = μb = 0.36 and
νa = νb = 0.001

estimation of errors due to the loss of information (bits)
carried by an optical mode.
As one can see in Fig. 10, the range at which we can

transmit secure information depends critically on the
value of αopt . The values for the parameters used in the
simulation were taken across the relevant literature [15,
30, 33, 34] and are detailed in Fig. 10. Moreover, we
have imposed the optimal conditions μaηa = μbηb and
νa = νb [15, 33]. The results under full autocompensa-
tion gives a secure key rate up to a distance about 130
km between Alice (Bob) and Charlie, therefore 260 km
betweenAlice and Bob. If we consider a perturbation coef-
ficient of αopt = 0.5 · 10−3 a reduction of 38% in such
a distance is obtained, that is, a secure key rate distance
about 160 km between Alice and Bob. In the case αopt =
2.0 · 10−3 a dramatic reduction of the secure key rate dis-
tance is obtained. Therefore, these results show that the
optical perturbations in the links for MDI protocol are an
important source of errors what contributes to a remark-
able reduction of the secure key rate distance, which is
more important than in the case of protocols based on a
single photon, like, for example, the BB84 one [35].

Conclusions
We have shown how to implement a A-MDI-QKD pro-
tocol in different settings according to the kind of opti-
cal fiber used for space division multiplexing, that is,
few-mode optical fibers maintaining polarization modes
(PM-FMF) or maintaining space modes (SM-FMF) and

MCFs. In particular, we have proposed three systems for
A-MDI-QKD by using collinear, polarizations and codi-
rectional modes. Discrete and/or integrated components
have been used for both measuring Bell states and achiev-
ing autocompensation. As such fibers are assumed to be
the links of present and near-future optical networks, then
implementation of QKD in them and in a plug-and-play
fashion would offer clear practical benefits, as for exam-
ple, to use several channels for MDI-QKD what would
in turn compensate the losses and therefore increase the
bit rate. Finally, simulations of secret key rates with per-
turbations in the link has been made what has shown
that a remarkable reduction of secret key rate distances is
obtained if an autocompensatingmethod is not used. Sim-
ulations have been made for codirectional modes (MCFs)
because they have the advantage that no alignment of
quantum states bases is required, but the results can
be easily extended to polarization and collinear modes
(FMFs).
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