Quabis, S, Dorn, R, Eberler, M, Glöckl, O, Leuchs, G: Focusing light to a tighter spot. Opt. Commun. 179, 1–7 (2000). doi:10.1016/S0030-4018(99)00729-4.
Article
ADS
Google Scholar
Sondermann, M, Maiwald, R, Konermann, H, Lindlein, N, Peschel, U, Leuchs, G: Design of a mode converter for efficient light-atom coupling in free space. Appl. Phys. B. 89(4), 489–492 (2007). doi:10.1007/s00340-007-2859-4.
Article
ADS
Google Scholar
Stobinska, M, Alber, G, Leuchs, G: Perfect excitation of a matter qubit by a single photon in free space. EPL (Europhys. Lett.) 86(1), 14007 (2009).
Article
ADS
Google Scholar
Leuchs, G, Sondermann, M: Light-matter interaction in free space. J. Mod. Opt. 60(1), 36–42 (2013). doi:10.1080/09500340.2012.716461. http://dx.doi.org/10.1080/09500340.2012.716461
Article
ADS
Google Scholar
Piro, N, Rohde, F, Schuck, C, Almendros, M, Huwer, J, Ghosh, J, Haase, A, Hennrich, M, Dubin, F, Eschner, J: Heralded single-photon absorption by a single atom. Nat. Phys. 7(1), 17–20 (2011). doi:10.1038/nphys1805.
Article
Google Scholar
Tey, MK, Maslennikov, G, Liew, TCH, Aljunid, SA, Huber, F, Chng, B, Chen, Z, Scarani, V, Kurtsiefer, C: Interfacing light and single atoms with a lens. New J. Phys. 11(4), 043011 (2009).
Article
ADS
Google Scholar
Wrigge, G, Gerhardt, I, Hwang, J, Zumofen, G, Sandoghdar, V: Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys. 4(1), 60–66 (2008). doi:10.1038/nphys812.
Article
Google Scholar
Pinotsi, D, Imamoglu, A: Single photon absorption by a single quantum emitter. Phys. Rev. Lett. 100, 093603 (2008). doi:10.1103/PhysRevLett.100.093603.
Article
ADS
Google Scholar
Drechsler, A, Lieb, M, Debus, C, Meixner, A, Tarrach, G: Confocal microscopy with a high numerical aperture parabolic mirror. Opt. Express. 9(12), 637–644 (2001). doi:10.1364/OE.9.000637.
Article
ADS
Google Scholar
Stadler, J, Stanciu, C, Stupperich, C, Meixner, A. J: Tighter focusing with a parabolic mirror. Opt. Lett. 33(7), 681–683 (2008).
Article
ADS
Google Scholar
Lindlein, N, Maiwald, R, Konermann, H, Sondermann, M, Peschel, U, Leuchs, G: A new 4 π geometry optimized for focusing on an atom with a dipole-like radiation pattern. Laser Phys. 17(7), 927–934 (2007). doi:10.1134/S1054660X07070055.
Article
ADS
Google Scholar
Maiwald, R, Leibfried, D, Britton, J, Bergquist, J. C, Leuchs, G, Wineland, DJ: Stylus ion trap for enhanced access and sensing. Nat. Phys. 5(8), 551–554 (2009). doi:10.1038/nphys1311.
Article
Google Scholar
Fischer, M, Bader, M, Maiwald, R, Golla, A, Sondermann, M, Leuchs, G: Efficient saturation of an ion in free space. Appl. Phys. B. 117(3), 797–801 (2014). doi:10.1007/s00340-014-5817-y.
Article
ADS
Google Scholar
Linke, NM, Allcock, DTC, Szwer, DJ, Ballance, CJ, Harty, TP, Janacek, HA, Stacey, DN, Steane, AM, Lucas, DM: Background-free detection of trapped ions. Appl. Phys. B. 107(4), 1175–1180 (2012). doi:10.1007/s00340-011-4870-z.
Article
ADS
Google Scholar
Leuchs, G, Mantel, K, Berger, A, Konermann, H, Sondermann, M, Peschel, U, Lindlein, N, Schwider, J: Interferometric null test of a deep parabolic reflector generating a hertzian dipole field. Appl. Opt. 47(30), 5570 (2008). doi:10.1364/AO.47.005570.
Bassett, IM: Limit to concentration by focusing. Optica Acta Intl. J. Opt. 33(3), 279–286 (1986). doi:10.1080/713821943.
Quabis, S, Dorn, R, Leuchs, G: Generation of a radially polarized doughnut mode of high quality. Appl. Phys. B. 81(5), 597–600 (2005). doi:10.1007/s00340-005-1887-1.
Golla, A, Chalopin, B, Bader, M, Harder, I, Mantel, K, Maiwald, R, Lindlein, N, Sondermann, M, Leuchs, G: Generation of a wave packet tailored to efficient free space excitation of a single atom. Eur. Phys. J. D. 66(7), 190 (2012). doi:10.1140/epjd/e2012-30293-y. arXiv:1207.3215.
Sondermann, M, Lindlein, N, Leuchs, G: Maximizing the electric field strength in the foci of high numerical aperture optics. ArXiv e-prints (2008). 0811.2098.
Alber, G, Bernád, JZ, Stobińska, M, Sánchez-Soto, LL, Leuchs, G: Qed with a parabolic mirror. Phys. Rev. A. 88, 023825 (2013). doi:10.1103/PhysRevA.88.023825.https://arxiv.org/abs/0811.2098.
Meyer, HM, Steiner, M, Ratschbacher, L, Zipkes, C, Köhl, M: Laser spectroscopy and cooling of Yb+ ions on a deep-UV transition. Phys. Rev. A. 85(1), 012502 (2012). doi:10.1103/PhysRevA.85.012502.
Article
ADS
Google Scholar
Olmschenk, S, Younge, KC, Moehring, DL, Matsukevich, D. N, Maunz, P, Monroe, C: Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A. 76(5), 052314 (2007). doi:10.1103/PhysRevA.76.052314.
Article
ADS
Google Scholar
Richards, B, Wolf, E: Electromagnetic diffraction in optical systems. II, structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 253(1274), 358–379 (1959). doi:10.1098/rspa.1959.0200.
Article
ADS
MATH
Google Scholar
Sheppard, CJR, Choudhury, A: Image formation in the scanning microscope. Optica Acta Int. J. Opt. 24(10), 1051–1073 (1977). doi:10.1080/713819421.
Article
ADS
Google Scholar
Hell, SW: Far-field optical nanoscopy. Science. 316(5828), 1153–1158 (2007). doi:10.1126/science.1137395.
Article
ADS
Google Scholar
Horton, NG, Wang, K, Kobat, D, Clark, CG, Wise, FW, Schaffer, CB, Xu, C: In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics. 7(3), 205–209 (2013). doi:10.1038/nphoton.2012.336.
Article
ADS
Google Scholar
Denk, W, Strickler, JH, Webb, WW: Two-photon laser scanning fluorescence microscopy. Science. 248(4951), 73–76 (1990). doi:10.1126/science.2321027.
Article
ADS
Google Scholar
Andersen, ME, Muggli, RZ: Microscopical techniques in the use of the molecular optics laser examiner raman microprobe. Anal. Chem. 53(12), 1772–1777 (1981). doi:10.1021/ac00235a013. http://dx.doi.org/10.1021/ac00235a013
Heugel, S, Fischer, M, Elman, V, Maiwald, R, Sondermann, M, Leuchs, G: Resonant photo-ionization of Yb+ to Yb2+. J. Phys. B Atomic Mol. Opt. Phys. 49(1), 015002 (2016). doi:10.1088/0953-4075/49/1/015002.
Article
ADS
Google Scholar
Tey, MK, Maslennikov, G, Liew, TCH, Aljunid, SA, Huber, F, Chng, B, Chen, Z, Scarani, V, Kurtsiefer, C: Interfacing light and single atoms with a lens. New J. Phys. 11(4), 043011 (2009).
Article
ADS
Google Scholar
Eschner, J: Sub-wavelength resolution of optical fields probed by single trapped ions: Interference, phase modulation, and which-way information. Eur. Phys. J. D. 22(3), 341–345 (2003). doi:10.1140/epjd/e2002-00235-7.
Article
ADS
Google Scholar
Stenholm, S: The semiclassical theory of laser cooling. Rev. Mod. Phys. 58, 699–739 (1986). doi:10.1103/RevModPhys.58.699.
Article
ADS
Google Scholar
Eschner, J, Morigi, G, Schmidt-Kaler, F, Blatt, R: Laser cooling of trapped ions. J. Opt. Soc. Am. B. 20(5), 1003–1015 (2003). doi:10.1364/JOSAB.20.001003.
Article
ADS
Google Scholar
Chang, R, Hoendervanger, AL, Bouton, Q, Fang, Y, Klafka, T, Audo, K, Aspect, A, Westbrook, CI, Clément, D: Three-dimensional laser cooling at the doppler limit. Phys. Rev. A. 90, 063407 (2014). doi:10.1103/PhysRevA.90.063407.
Article
ADS
Google Scholar
Maiwald, R, Golla, A, Fischer, M, Bader, M, Heugel, S, Chalopin, B, Sondermann, M, Leuchs, G: Collecting more than half the fluorescence photons from a single ion. Phys. Rev. A. 86(4), 043431 (2012). doi:10.1103/PhysRevA.86.043431.
Article
ADS
Google Scholar