Halas, NJ, “Plasmonics: An Emerging Field Fostered by Nano Letters,” Nano Lett. **10**(10), 3816–3822(2010)

Tame, M.S, McEnery, KR, Ozdemir, SK, Lee, J, Maier, SA, Kim, MS: Quantum plasmonics. Nat. Phys. **9**, 329–340 (2013)

Article
Google Scholar

Brongersma, ML, Halas, N.J, Nordlander, P: Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. **10**, 25–34 (2015)

Article
ADS
Google Scholar

Ding, SY, Yi, J, Li, JF, Ren, B, Wu, DY, Panneerselvam, R, Tian, ZQ: Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials. **1**, 1–16 (2016)

Article
Google Scholar

Zhang, JX, Zhang, LD: Nanostructures for surface plasmons. Adv. Opt. Photon. **4**, 157–321 (2012)

Article
Google Scholar

Hobbs, RG, Manfrinato, VR, Yang, YJ, Goodman, SA, Zhang, LH, Stach, EA, Berggren, KK: High-energy surface and volume plasmons in nanopatterned sub-10 nm aluminum nanostructures. Nano Lett. **16**, 4149–4157 (2016)

Article
ADS
Google Scholar

Schmidt, FP, Ditlbacher, H, Hohenester, U, Hohenau, A, Hofer, F, Krenn, JR: Universal dispersion of surface plasmons in flat nanostructures. Nat. Commun. **5**, 3604 (2014)

Google Scholar

Schmidt, FP, Ditlbacher, H, Hofer, F, Krenn, JR, Hohenester, U: Morphing a plasmonic nanodisk into a nanotriangle. Nano Lett. **14**, 4810–4815 (2014)

Article
ADS
Google Scholar

Imura, K, Ueno, K, Misawa, H, Okamoto, H, McArthur, D, Hourahine, B, Papoff, F: Plasmon modes in single gold nanodiscs. Opt. Express. **22**, 12189–12199 (2014)

Article
ADS
Google Scholar

Schmidt, FP, Ditlbacher, H, Hohenester, U, Hohenau, A, Hofer, F, Krenn, JR: Dark plasmonic breathing modes in silver nanodisks. Nano Lett. **12**, 5780–5783 (2012)

Article
ADS
Google Scholar

Krug, MK, Reisecker, M, Hohenau, A, Ditlbacher, H, trugler, A, Hohenester, U, and Krenn, JR: “Probing plasmonic breathing modes optically,” Applied Physics Letters **105**, 171103 (2014)

Hao, F, Sonnefraud, Y, Dorpe, PV, Maier, SA, Halas, N.J, Nordlander, P: Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. **8**, 3983–3988 (2008)

Article
ADS
Google Scholar

Hao, F, Larsson, EM, Ali, TA, Sutherland, DS, Nordlander, P: Shedding light on dark plasmons in gold nanorings. Chem. Phys. Lett. **458**, 262–266 (2008)

Article
ADS
Google Scholar

Liu, MZ, Lee, TW, Gray, SK, Sionnest, PG, Pelton, M: Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys. Rev. Lett. **102**, 107401 (2009)

Article
ADS
Google Scholar

Chen, HY, He, CL, Wang, CY, Lin, MH, Mitsui, D, Eguchi, M, Teranishi, T, Gwo, S: Far-field optical imaging of a linear array of coupled gold nanocubes: direct visualization of dark plasmon propagating modes. ACS Nano. **10**, 8223–8229 (2011)

Article
Google Scholar

D. Solis Jr, Willingham, BSL L, Nauert, LS, Slaughter, J, Olson, P, Swanglap, A, Paul, WS, Chang, and Link, S: “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Letter **12**, 1349–1353 (2012)

Hafele, V, Trugler, A, Hohenester, U, Hohenau, A, Leitner, A, Krenn, JR: Local refractive index sensitivity of gold nanodisks. Opt. Express. **23**, 10293–10300 (2015)

Article
ADS
Google Scholar

Donner, JS, Baffou, G, McCloskey, D, Quidant, R: Plasmon-assisted optofluidics. ACS Nano. **7**, 5457–5462 (2011)

Article
Google Scholar

Righini, M, Volpe, G, Girard, C, Petrov, D, Quidant, R: Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. **100**, 186804 (2008)

Article
ADS
Google Scholar

Paramon, JS, Bosch, S: Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams. ACS Nano. **9**, 8415–8423 (2012)

Article
Google Scholar

Gomez, DE, Teo, ZQ, Altissimo, M, Davis, TJ, Earl, S, Roberts, A: The dark side of plasmonics. Nano Lett. **13**, 3722–3728 (2013)

Article
ADS
Google Scholar

Yanai, A, Grajower, M, Lerman, GM, Hentschel, M, Giessen, H, Levy, U: Plasmonic oligomers under radially and azimuthally polarized light excitation. ACS Nano. **8**, 4969–4974 (2014)

Article
Google Scholar

Sakai, K, Nomura, K, Yamamoto, T, Sasaki, K: Excitation of multipole plasmons by optical vortex beams. Sci Rep. **5**, 8431 (2015)

Article
ADS
Google Scholar

Andrews, DL, Babiker, M: Eds, the Angular Momentum of Light (Cambridge University Press, 2013)

Zhan, QW: Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. **1**, 1–57 (2009)

Article
Google Scholar

Herrero, RM, Mejias, PM: Propagation of light fields with radial or azimuthal polarization distribution at a transverse plane. Opt. Express. **16**, 9021–9033 (2008)

Article
ADS
Google Scholar

Kotlyar, VV, Kovalev, AA: Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization. J. Opt. Soc. Am. A. **27**, 372–380 (2010)

Article
ADS
Google Scholar

Johnson, PB, Christy, RW: Optical constant of nobel metals. Phys. Rev. B. **6**, 4370–4379 (1972)

Article
ADS
Google Scholar

Joe, YS, Satanin, AM, Kim, CS: Classical analogy of Fano resonances. Phys. Scr. **74**, 259–266 (2006)

Article
ADS
Google Scholar

Maier, SA: Plasmonics: Fundamentals and Applications (Springer, 2007)

Dionne, JA, Sweatlock, LA, Atwater, HA: Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B. **72**, 075404 (2005)

Article
ADS
Google Scholar

Wozniak, P, Banzer, P, Leuchs, G: Selective switching of individual multipole resonances in single dielectric nanoparticles. Laser Photonics Rev. **9**, 231–240 (2015)

Article
Google Scholar