Kuiper, J.J., et al.: An Ocular Protein Triad Can Classify Four Complex Retinal Diseases. Sci Rep. 7, 41595 (2017)
Article
ADS
Google Scholar
Iyer, S.S., Cheng, G.: Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 32(1), 23–63 (2012). https://doi.org/10.1615/CritRevImmunol.v32.i1.30
Article
Google Scholar
Spolski, R., Leonard, W.J.: Interleukin-21: a double-edged sword with therapeutic potential. Nat. Rev. Drug Discov. 13(5), 379–395 (2014). https://doi.org/10.1038/nrd4296
Article
Google Scholar
Bernstein, K.E., Khan, Z., Giani, J.F., Cao, D.Y., Bernstein, E.A., Shen, X.Z.: Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol. 14(5), 325–336 (2018). https://doi.org/10.1038/nrneph.2018.15
Article
Google Scholar
de Jager, W., Prakken, B.J., Bijlsma, J.W.J., Kuis, W., Rijkers, G.T.: Improved multiplex immunoassay performance in human plasma and synovial fluid following removal of interfering heterophilic antibodies. J. Immunol. Methods. 300(1–2), 124–135 (2005). https://doi.org/10.1016/j.jim.2005.03.009
Article
Google Scholar
Smith, W.E.: Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem. Soc. Rev. 37(5), 955–964 (2008). https://doi.org/10.1039/b708841h
Article
Google Scholar
Pannico, M., et al.: Direct printing of gold nanospheres from colloidal solutions by pyro-electrohydrodynamic jet allows hypersensitive SERS sensing. Appl Surface Sci. 531, (2020)
Pelletier, C.C., Lambert, J.L., Borchert, M.: Determination of glucose in human aqueous humor using Raman spectroscopy and designed-solution calibration. Appl. Spectrosc. 59(8), 1024–1031 (2005). https://doi.org/10.1366/0003702054615133
Article
ADS
Google Scholar
Movasaghi, Z., Rehman, S., Rehman, I.U.: Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42(5), 493–541 (2007). https://doi.org/10.1080/05704920701551530
Article
ADS
Google Scholar
Li, Z., et al.: A Plasmonic Staircase Nano-Antenna Device with Strong Electric Field Enhancement for Surface Enhanced Raman Scattering (SERS) Applications. J Phys D: Applied Physics. 45, 30 (2012)
ADS
Google Scholar
Marshall, S., Cooper, J.B.: Quantitative Raman spectroscopy when the signal-to-noise is below the limit of quantitation due to fluorescence interference: advantages of a moving window sequentially shifted excitation approach. Appl. Spectrosc. 70(9), 1489–1501 (2016). https://doi.org/10.1177/0003702816662621
Article
ADS
Google Scholar
Grilli, S., et al.: Active Accumulation of Very Diluted Biomolecules by Nano-Dispensing for Easy Detection below the Femtomolar Range. Nature Commun. 5, 5314 (2014)
Article
ADS
Google Scholar
Rega, R., et al.: Detecting Collagen Molecules at Picogram Level through Electric Field-Induced Accumulation. Sensors (Basel). 20, 12 (2020)
Article
Google Scholar
Kupcova Skalnikova, H., et al.: Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research. Int J Mol Sci. 18, 12 (2017)
Article
Google Scholar
Xu, K., et al.: Micro Optical Sensors Based on Avalanching Silicon Light-Emitting Devices Monolithically Integrated on Chips. Optical Materials Express. 9, 10 (2019)
Google Scholar
Xu, K., et al.: Light Emission from a Poly-Silicon Device with Carrier Injection Engineering. Materials Sci Engineering: B. 231, 28–31 (2018)
Article
Google Scholar
Erckens, R., et al.: Raman spectroscopy in ophthalmology: from experimental tool to applications in vivo. Lasers Med. Sci. 16(4), 236–252 (2001). https://doi.org/10.1007/PL00011360
Article
Google Scholar
Erckens, R.J., Jongsma, F.H.M., Wicksted, J.P., Hendrikse, F., March, W.F., Motamedi, M.: Drug-induced corneal hydration changes monitoredin vivo by non-invasive confocal Raman spectroscopy. J. Raman Spectrosc. 32(9), 733–737 (2001). https://doi.org/10.1002/jrs.731
Article
ADS
Google Scholar
Elshout, M., Erckens, R.J., Webers, C.A., Beckers, H.J., Berendschot, T.T., de Brabander, J., Hendrikse, F., Schouten, J.S.: Detection of Raman spectra in ocular drugs for potential in vivo application of Raman spectroscopy. J. Ocul. Pharmacol. Ther. 27(5), 445–451 (2011). https://doi.org/10.1089/jop.2011.0018
Article
Google Scholar
Kaji, Y., et al.: Raman Microscopy: a Noninvasive Method to Visualize the Localizations of Biomolecules in the Cornea. Cornea. 36(Suppl 1), S67–S71 (2017)
Article
Google Scholar
Paluszkiewicz, C., Chaniecki, P., Rękas, M., Rajchel, B., Piergies, N., Kwiatek, W.M.: Analysis of human lenses by Raman microspectroscopy. Acta Phys. Pol. A. 129(2), 244–246 (2016). https://doi.org/10.12693/APhysPolA.129.244
Article
ADS
Google Scholar
Lazaro, J.C., et al.: Optimizing the Raman signal for characterizing organic samples: the effect of slit aperture and exposure time. Spectrosc-Int J. 23(2), 71–80 (2009). https://doi.org/10.1155/2009/764524
Article
Google Scholar
Awazu, K., Kawazoe, H.: Strained Si–O–Si bonds in amorphous SiO2 materials: a family member of active centers in radio, photo, and chemical responses. J. Appl. Phys. 94(10), 6243–6262 (2003). https://doi.org/10.1063/1.1618351
Article
ADS
Google Scholar
Galeener, F.L.: Band limits and the vibrational spectra of tetrahedral glasses. Phys. Rev. B. 19(8), 4292–4297 (1979). https://doi.org/10.1103/PhysRevB.19.4292
Article
ADS
Google Scholar
Galeener, F.L.: Planar rings in vitreous silica. J. Non-Cryst. Solids. 49(1), 53–62 (1982). https://doi.org/10.1016/0022-3093(82)90108-9
Article
ADS
Google Scholar
Gniadecka, M., Wulf, H.C., Nymark Mortensen, N., Faurskov Nielsen, O., Christensen, D.H.: Diagnosis of basal cell carcinoma by Raman spectroscopy. J. Raman Spectrosc. 28(23), 125–129 (1997). https://doi.org/10.1002/(SICI)1097-4555(199702)28:2/3<125::AID-JRS65>3.0.CO;2-#
Article
ADS
Google Scholar
Shetty, G., Kendall, C., Shepherd, N., Stone, N., Barr, H.: Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Br. J. Cancer. 94(10), 1460–1464 (2006). https://doi.org/10.1038/sj.bjc.6603102
Article
Google Scholar
Faolain, E.O., et al.: A study examining the effects of tissue processing on human tissue sections using vibrational spectroscopy. Vib. Spectrosc. 38(1), 121–127 (2005). https://doi.org/10.1016/j.vibspec.2005.02.013
Article
Google Scholar
C. David et al., "Raman and IR Spectroscopy of Manganese Superoxide Dismutase, a Pathology Biomarker," Vibrational Spectroscopy 62(50–58 (2012)
F. J. H. Douglas A. Skoog, Stanley R. Crouch, Principles of Instrumental Analysis, 7th ed., Cengage Learning (2016)
L. M. Levine, "Basic and Clinical Science Course, Section 2: Fundamentals and Principles of Ophthalmology," in Basic and Clinical Science Course, p. 430, American Academy of Ophthalmology (2018–2019)
Byrne, H.J., Knief, P., Keating, M.E., Bonnier, F.: Spectral pre and post processing for infrared and Raman spectroscopy of biological tissues and cells. Chem. Soc. Rev. 45(7), 1865–1878 (2016). https://doi.org/10.1039/C5CS00440C
Article
Google Scholar
Woong Moon, S., Kim, W., Choi, S., Shin, J.H.: Label-free optical detection of age-related and diabetic oxidative damage in human aqueous humors. Microsc. Res. Tech. 79(11), 1050–1055 (2016). https://doi.org/10.1002/jemt.22743
Article
Google Scholar
C. J. F. Bertens et al., "Confocal Raman spectroscopy: Evaluation of a non-invasive technique for the detection of topically applied ketorolac tromethamine in vitro and in vivo," Int. J. Pharm. 570(118641 (2019)
S. Zhang et al., "in Vitro and in Vivo Datasets of Topically Applied Ketorolac Tromethamine in Aqueous Humor Using Raman Spectroscopy," Data Brief 27(104694 (2019)