Pandhija, S., Rai, N.K., Rai, A.K., Thakur, S.N.: Contaminant concentration in environmental samples using LIBS and CF-LIBS. Appl. Phys. B. Lasers. Opt. 98(1), 231–241 (2010). https://doi.org/10.1007/s00340-009-3763-x
Article
ADS
Google Scholar
St-Onge, L., Kwong, E., Sabsabi, M., Vadas, E.B., St-Onge, L., et al.: Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy. J. Pharm. Biomed. Anal. 36(2), 277–284 (2004). https://doi.org/10.1016/j.jpba.2004.06.004
Article
Google Scholar
Bustamante, M.F., Rinaldi, C.A., Ferrero, J.C.: Laser induced breakdown spectroscopy characterization of ca in a soil depth profile. Spectrochim. Acta. Part. B. 57(2), 303–309 (2002). https://doi.org/10.1016/S0584-8547(01)00394-9
Article
ADS
Google Scholar
Maravelaki-Kalaitzaki, P., Anglos, D., Kilikoglou, V., Zafiropulos, V.: Compositional characterization of encrustation on marble with laser induced breakdown spectroscopy. Spectrochim. Acta. Part. B. 56(6), 887–903 (2001). https://doi.org/10.1016/S0584-8547(01)00226-9
Article
ADS
Google Scholar
Pandhija, S., Rai, A.K.: Laser-induced breakdown spectroscopy: a versatile tool for monitoring traces in materials. Pramana. 70(3), 553–563 (2008). https://doi.org/10.1007/s12043-008-0070-8
Article
ADS
Google Scholar
Gomba, J.M., D’Angelo, C., Bertuccelli, D., Bertuccelli, G.: Spectroscopic characterization of laser-induced breakdown in aluminum-lithium alloy samples for quantitative determination of traces. Spectrochim. Acta. Part. B. 56(6), 695–705 (2001). https://doi.org/10.1016/S0584-8547(01)00208-7
Article
ADS
Google Scholar
Lee, W.B., Wu, J.Y., Lee, Y.I., Sneddon, J.: Recent applications of laser-induced breakdown spectrometry: a review of material approaches. Appl. Spectrosc. Rev. 39(1), 27–97 (2004). https://doi.org/10.1081/ASR-120028868
Article
ADS
Google Scholar
Li, J., Lu, J., Lin, Z., Gong, S., Xie, C., Chang, L., Yang, L., Li, P.: Effects of experimental parameters on elemental analysis of coal by laserinduced breakdown spectroscopy. Opt. Laser Technol. 41(8), 907–913 (2009). https://doi.org/10.1016/j.optlastec.2009.03.003
Article
ADS
Google Scholar
Beldjilali, S., Borivent, D., Mercadier, L., Mothe, E., Clair, G., Hermann, J.: Evaluation of minor element concentrations in potatoes using laser-induced breakdown spectroscopy. Spectrochim. Acta. Part. B. 65(8), 727–733 (2010). https://doi.org/10.1016/j.sab.2010.04.015
Article
ADS
Google Scholar
Feng, J., Wang, Z., Li, Z., Ni, W.: Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters. Spectrochim. Acta. Part. B. 65(7), 549–556 (2010). https://doi.org/10.1016/j.sab.2010.05.004
Article
ADS
Google Scholar
D. A. Rusak, , B. C. Castle, B. W.Smith, J. D. Winefordner, Fundamentals and applications of laser-induced breakdown spectroscopy, Crit. Rev. Anal. Chem., 27 (1997) 257–290, 4, DOI: https://doi.org/10.1080/10408349708050587
Article
Google Scholar
Sneddon, J., Lee, Y.-I.: Novel and recent applications of elemental determination by laser-induced breakdown spectrometry. Anal. Lett. 32(11), 2143–2162 (1999). https://doi.org/10.1080/00032719908542960
Article
Google Scholar
St-Onge, L., Kwong, E., Sabsabi, M., Vadas, E.B.: Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy. Spectrochim. Acta. Part. B. 57(7), 1131–1140 (2002). https://doi.org/10.1016/S0584-8547(02)00062-9
Article
ADS
Google Scholar
Tognoni, E., Palleschi, V., Corsi, M., Cristoforetti, G.: Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches. Spectrochim. Acta. Part. B. 57(7), 1115–1130 (2002). https://doi.org/10.1016/S0584-8547(02)00053-8
Article
ADS
Google Scholar
Inakollua, P., Philipb, T., Raic, A.K., Yueha, F.-Y., Singh, J.P.: A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods. Spectrochim. Acta. Part. B. 64, 99–104 (2009)
Article
ADS
Google Scholar
Clegg, S.M., Sklute, E., Dyar, M.D., Barefield, J.E., Wiens, R.C.: Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques. Spectrochim. Acta. Part. B. 64(1), 79–88 (2009). https://doi.org/10.1016/j.sab.2008.10.045
Article
ADS
Google Scholar
Salle, B., Lacour, J.-L., Mauchien, P., Fichet, P., Maurice, S., Manhès, G.: Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere. Spectrochim. Acta. Part. B. 61(3), 301–313 (2006). https://doi.org/10.1016/j.sab.2006.02.003
Article
ADS
Google Scholar
Sirven, J.-B., Bousquet, B., Canioni, L., Sarger, L.: Laser-induced breakdown spectroscopy of composite samples: comparison of advanced Chemometrics methods. Anal. Chem. 78(5), 1462–1469 (2006). https://doi.org/10.1021/ac051721p
Article
Google Scholar
Sokullu, E., Palabıyık, I.M., Onur, F., Boyacı, I.H.: Chemometric methods for simultaneous quantification of lactic, malic and fumaric acids. Eng. Life Sci. 10(4), 297–303 (2010). https://doi.org/10.1002/elsc.200900080
Article
Google Scholar
Amador-Hernández, J., García-Ayuso, L.E., Fernandez-Romero, J.M., Luque de Castro, M.D.: Partial least squares regression for problem solving in precious metal analysis by laser induced breakdown spectrometry. J. Anal. At. Spectrom. 15(6), 587–593 (2000). https://doi.org/10.1039/B000813N
Article
Google Scholar
Kılıç, K., Bas, D., Boyacı, I.H.: An easy approach for the selection of optimal neural network structure. J. Food. 34(2), 73–81 (2009)
Google Scholar
Yuab, K., Ren, J., Zhao, Y.: Principles, developments and applications of laser-induced breakdown spectroscopy in agriculture: a review. Artif. Intel. Agric. 4, 127–139 (2020)
Google Scholar
Wang, Z., Feng, J., Li, L., Ni, W., Li, Z.: A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements. J. Anal. At. Spectrom. 26(11), 2289–2299 (2011). https://doi.org/10.1039/c1ja10041f
Article
Google Scholar
Sattmann, R., Moench, I., Krause, H., Noll, R., Couris, S., Hatziapostolou, A., Mavromanolakis, A., Fotakis, C., Larrauri, E., Miguel, R.: Laser-induced breakdown spectroscopy for polymer identification. Appl. Spectrosc. 52(3), 456–461 (1998). https://doi.org/10.1366/0003702981943680
Article
ADS
Google Scholar
Sirven, J.-B., Bousquet, B., Canioni, L., Sarger, L., Tellier, S., Potin-Gantier, M., Le Hecho, I.: Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis. Anal. Bioanal. Chem. 385, 256 (2006)
Article
Google Scholar
Motto-Ros, V., Koujelev, A.S., Osinski, G.R., Dudelzak, A.E.: Quantitative multi-elemental laser-induced breakdown spectroscopy using artificial neural networks. J Eur Optical Soc. 3, 08011 (2008). https://doi.org/10.2971/jeos.2008.08011
Article
Google Scholar
Elliott, P., Stamler, J., Nichols, R., Dyer, A.R., Stamler, R., Kesteloot, H., Marmot, M.: Intersalt revisited: further analyses of 24 hour sodium excretion and blood pressure within and across populations. Br. Med. J. 312(7041), 1249–1253 (1996). https://doi.org/10.1136/bmj.312.7041.1249
Article
Google Scholar
Tuomilehto, J., Jousilahti, P., Rastenyte, D., Moltchanov, V., Tanskanen, A., Pietinen, P., Nissinen, A.: Urinary sodium excretion and cardiovascular mortality in Finland: a prospective study. Lancet. 357(9259), 848–851 (2001). https://doi.org/10.1016/S0140-6736(00)04199-4
Article
Google Scholar
FSAI (Food Safety Authority of Ireland). Salt and health: review of the scientific evidence and recommendations for public policy in Ireland, 2005. URL http://www.fsai.ie/uploadedFiles/Science_and_Health/salt_report-1.pdf. Accessed 28.09.2014
Google Scholar
Capuano, E., Van der Veer, G., Verheijen, P.J.J., Heenan, S.P., Van de Laak, L.F.J., Koopmans, H.B.M., Van Ruth, S.M.: Comparison of a sodium-based and a chloride-based approach for the determination of sodium chloride content of processed foods in the Netherlands. J. Food Compos. Anal. 31(1), 129–136 (2013). https://doi.org/10.1016/j.jfca.2013.04.004
Article
Google Scholar
Smith, T., Haider, C.: Novel method for determination of sodium in foods by thermometric endpoint titrimetry (TET). J. Agric. Chem. Environ. 3(1B), 20–25 (2014)
Google Scholar
Maria Markiewicz, K., Xavier Cama, M., Maria, G., Casado, P., Yash, D., Raquel Cama, M., Patrick, C., Carl, S.: Laser-induced breakdown spectroscopy (LIBS) for food analysis: a review. Trends Food Sci. Technol. 65, 80–93 (2017). https://doi.org/10.1016/j.tifs.2017.05.005
Article
Google Scholar
Agrawal, R., Kumar, R., Rai, S., Pathak, A.K., Rai, A.K., Rai, G.K.: LIBS: a quality control tool for food supplements. Food Biophysics. 6(4), 527–533 (2011). https://doi.org/10.1007/s11483-011-9235-y
Article
Google Scholar
Bilge, G., Boyacı, I.H., Eseller, K.E., Tamer, U.: Serhat Çakır, analysis of bakery products by laser-induced breakdown spectroscopy. Food Chem. 181, 186–190 (2015). https://doi.org/10.1016/j.foodchem.2015.02.090
Article
Google Scholar
Sezer, B., Bilge, G., Boyaci, I.H.: Capabilities and limitations of LIBS in food analysis. TrAC Trends Anal. Chem. 97, 345–353 (2017). https://doi.org/10.1016/j.trac.2017.10.003
Article
Google Scholar
AACCI (American Association of Cereal Chemists International). (2010). Approved Methods of Analysis. 11th Ed. AACCI: St. Paul. Methods 10–10.03
EPA Method 3051. (1994). Microwave assisted acid digestion of sediments, sludges, soils and oils
Google Scholar
Uysal, R.S., Boyaci, I.H., Genis, H.E., Tamer, U.: Determination of butter adulteration with margarine using Raman spectroscopy. Food. Chem. 141(4), 4397–4403 (2013). https://doi.org/10.1016/j.foodchem.2013.06.061
Article
Google Scholar
Tripathi, M.M., Eseller, K.E., Yueh, F.-Y., Singh, J.P.: Multivariate calibration of spectra obtained by laser induced breakdown spectroscopy of plutonium oxide surrogate residues. Spectrochim. Acta Part B. 64(11-12), 1212–1218 (2009). https://doi.org/10.1016/j.sab.2009.09.003
Article
ADS
Google Scholar
Lengard, V., Kermit, M.: 3-way and 3-block PLS regressions in consumer preference analysis. Food Qual. Prefer. 17(3–4), 234–242 (2006). https://doi.org/10.1016/j.foodqual.2005.05.005
Article
Google Scholar
Krishnan, A., Williams, L.J., McIntosh, A.R., Abdi, H.: Partial least squares (PLS) methods for neuroimaging: a tutorial and review. NeuroImage. 56(2), 455–475 (2011). https://doi.org/10.1016/j.neuroimage.2010.07.034
Article
Google Scholar
Chiang, Y.-H.: Using a combined AHP and PLS path modelling on blog site evaluation in Taiwan. Comput. Hum. Behav. 29(4), 1325–1333 (2013). https://doi.org/10.1016/j.chb.2013.01.025
Article
Google Scholar
Ortiz, M.C., Sarabia, L., Jurado-Lopez, A., Luque de Castro, M.D.: Minimum value assured by a method to determine gold in alloys by using laser-induced breakdown spectroscopy and partial least-squares calibration model. Anal. Chim. Acta. 515(1), 151–157 (2004). https://doi.org/10.1016/j.aca.2004.01.003
Article
Google Scholar
Hussain, T., Gondal, M.A.: Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis. J. Phys. 439, 1–12 (2013)
Google Scholar
Kuwako, A., Uchida, Y., Maeda, K.: Supersensitive detection of sodium in water with use of dual-pulse laser-induced breakdown spectroscopy. Appl. Opt. 42(50), 6052–6056 (2003). https://doi.org/10.1364/AO.42.006052
Article
ADS
Google Scholar
Lynch, E.J., Dal Bello, F., Sheehan, E.M., Cashman, K.D., Arendt, E.K., Lynch, E.J., et al.: Fundamental studies on the reduction of salt on dough and bread characteristics. Food Res. Int. 42(7), 885–891 (2009). https://doi.org/10.1016/j.foodres.2009.03.014
Article
Google Scholar