Rogalski, A.: HgCdTe photodetectors. Woodhead Publishing Series in Electronic and Optical Materials, 235–335 (2020). https://doi.org/10.1016/B978-0-08-102709-7.00007-3. https://www.sciencedirect.com/science/article/pii/B9780081027097000073. Accessed 19 Apr 2021.
Klipstein, P., Aronov, D., Ezra, M. b., Barkai, I., Berkowicz, E., Brumer, M., Fraenkel, R., Glozman, A., Grossman, S., Jacobsohn, E., Klin, O., Lukomsky, I., Shkedy, L., Shtrichman, I., Snapi, N., Yassen, M., Weiss, E.: Recent progress in InSb based quantum detectors in Israel. Infrared Phys. Technol. 59, 172–181 (2013). https://doi.org/10.1016/j.infrared.2012.12.035. Accessed 20 Apr 2021.
Article
ADS
Google Scholar
Rogalski, A.: Quantum well photoconductors in infrared detector technology. J. Appl. Phys. 93, 4355–4391 (2003). https://doi.org/10.1063/1.1558224.
Article
ADS
Google Scholar
Choi, K. K., Jhabvala, M. D., Sun, J., Jhabvala, C. A., Waczynski, A., Olver, K.: Resonator-quantum well infrared photodetectors. Appl. Phys. Lett. 103(20), 201113 (2013). https://doi.org/10.1063/1.4831797. Publisher: American Institute of Physics. Accessed 20 Apr 2021.
Article
ADS
Google Scholar
Ivanov, R., Smuk, S., Hellström, S., Evans, D., Höglund, L., Costard, E.: LWIR QWIPs at IRnova for next generation polarimetric imaging. Infrared Phys. Technol. 95 (2018). https://doi.org/10.1016/j.infrared.2018.10.017.
Rogalski, A., Kopytko, M., Martyniuk, P.: InAs/GaSb type-II superlattice infrared detectors: three decades of development, p. 1017715 (2017). https://doi.org/10.1117/12.2272817.
Rogalski, A., Martyniuk, P., Kopytko, M.: Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog. Quantum Electron. 68, 100228 (2019). https://doi.org/10.1016/j.pquantelec.2019.100228. Accessed 19 Apr 2021.
Article
Google Scholar
Rogalski, A., Martyniuk, P., Kopytko, M., Hu, W.: Trends in Performance Limits of the HOT Infrared Photodetectors. Appl. Sci. 11(2), 501 (2021). https://doi.org/10.3390/app11020501. Accessed 08 Mar 2021.
Article
Google Scholar
Langrock, C., Diamanti, E., Roussev, R. V., Yamamoto, Y., Fejer, M. M., Takesue, H.: Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO 3 waveguides. Opt. Lett. 30(13), 1725–1727 (2005). https://doi.org/10.1364/OL.30.001725. Publisher: Optical Society of America. Accessed 22 Mar 2021.
Article
ADS
Google Scholar
Boitier, F., Godard, A., Rosencher, E., Fabre, C.: Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors. Nat. Phys. 5(4), 267–270 (2009). https://doi.org/10.1038/nphys1218. Number: 4 Publisher: Nature Publishing Group. Accessed 14 Jan 2021.
Article
Google Scholar
Fishman, D. A., Cirloganu, C. M., Webster, S., Padilha, L. A., Monroe, M., Hagan, D. J., Van Stryland, E. W.: Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption. Nat. Photon. 5(9), 561–565 (2011). https://doi.org/10.1038/nphoton.2011.168. Number: 9 Publisher: Nature Publishing Group. Accessed 19 Mar 2021.
Article
ADS
Google Scholar
Portier, B., Vest, B., Pardo, F., Péré-Laperne, N., Steveler, E., Jaeck, J., Dupuis, C., Bardou, N., Lemaître, A., Rosencher, E., Haïdar, R., Pelouard, J. -L.: Resonant metallic nanostructure for enhanced two-photon absorption in a thin GaAs p-i-n diode. Appl. Phys. Lett. 105(1), 011108 (2014). https://doi.org/10.1063/1.4887375. Publisher: American Institute of Physics. Accessed 14 Jan 2021.
Article
ADS
Google Scholar
Hutchings, D. C., Stryland, E. W. V.: Nondegenerate two-photon absorption in zinc blende semiconductors. JOSA B. 9(11), 2065–2074 (1992). https://doi.org/10.1364/JOSAB.9.002065. Publisher: Optical Society of America. Accessed 10 Mar 2021.
Article
ADS
Google Scholar
Stryland, E. W. V., Woodall, M. A., Vanherzeele, H., Soileau, M. J.: Energy band-gap dependence of two-photon absorption. Opt. Lett. 10(10), 490–492 (1985). https://doi.org/10.1364/OL.10.000490. Publisher: Optical Society of America. Accessed 09 Mar 2021.
Article
ADS
Google Scholar
Nga Chen, Y., Todorov, Y., Askenazi, B., Vasanelli, A., Biasiol, G., Colombelli, R., Sirtori, C.: Antenna-coupled microcavities for enhanced infrared photo-detection. Appl. Phys. Lett. 104(3), 031113 (2014). https://doi.org/10.1063/1.4862750. Accessed 09 Mar 2021.
Article
ADS
Google Scholar
Koechlin, C., Bouchon, P., Pardo, F., Pelouard, J. -L., Haïdar, R.: Analytical description of subwavelength plasmonic MIM resonators and of their combination. Opt. Express. 21(6), 7025 (2013). https://doi.org/10.1364/OE.21.007025. Accessed 04 Jan 2021.
Article
ADS
Google Scholar
Verdun, M., Portier, B., Jaworowicz, K., Jaeck, J., Lelarge, F., Guilet, S., Dupuis, C., Haïdar, R., Pardo, F., Pelouard, J. -L.: Guided-mode resonator for thin InGaAs P-i-N short-wave infrared photo-diode. Appl. Phys. Lett. 108(5), 053501 (2016). https://doi.org/10.1063/1.4941297. Accessed 09 Mar 2021.
Article
ADS
Google Scholar
Fabas, A., El Ouazzani, H., Hugonin, J. -P., Haïdar, R., Greffet, J. -J., Bouchon, P.: Helmholtz-like Nanoresonators Applied to Surface Enhanced Infrared Absorption. In: Metamaterials 2019, Rome (2019). https://hal.archives-ouvertes.fr/hal-02409551. Accessed 29 Apr 2021.
Palaferri, D., Todorov, Y., Bigioli, A., Mottaghizadeh, A., Gacemi, D., Calabrese, A., Vasanelli, A., Li, L., Davies, A. G., Linfield, E. H., Kapsalidis, F., Beck, M., Faist, J., Sirtori, C.: Room-temperature nine- μm-wavelength photodetectors and GHz-frequency heterodyne receivers. Nature. 556(7699), 85–88 (2018). https://doi.org/10.1038/nature25790. Accessed 09 Mar 2021.
Article
ADS
Google Scholar
Miyazaki, H. T., Mano, T., Kasaya, T., Osato, H., Watanabe, K., Sugimoto, Y., Kawazu, T., Arai, Y., Shigetou, A., Ochiai, T., Jimba, Y., Miyazaki, H.: Synchronously wired infrared antennas for resonant single-quantum-well photodetection up to room temperature. 10 (2020). https://doi.org/10.1038/s41467-020-14426-6.
Hakl, M., Lin, Q., Lepillet, S., Billet, M., Lampin, J. -F., Pirotta, S., Colombelli, R., Wan, W., Cao, J. C., Li, H., Peytavit, E., Barbieri, S.: Ultrafast Quantum-Well Photodetectors Operating at 10 um with a Flat Frequency Response up to 70 GHz at Room Temperature. ACS Photonics. 8(2), 464–471 (2021). https://doi.org/10.1021/acsphotonics.0c01299. Publisher: American Chemical Society. Accessed 09 Mar 2021.
Article
Google Scholar
Fix, B., Jaeck, J., Vest, B., Verdun, M., Beaudoin, G., Sagnes, I., Pelouard, J. -L., Haïdar, R.: Nanostructured diode for infrared photodetection through nondegenerate two-photon absorption. Appl. Phys. Lett. 111(4), 041102 (2017). https://doi.org/10.1063/1.4996369. Accessed 04 Feb 2021.
Article
ADS
Google Scholar
Xu, G., Ren, X., Miao, Q., Yan, M., Pan, H., Chen, X., Wu, G., Wu, E.: Sensitive Infrared Photon Counting Detection by Nondegenerate Two-Photon Absorption in Si APD. IEEE Photon. Technol. Lett. 31(24), 1944–1947 (2019). https://doi.org/10.1109/LPT.2019.2950542.
Article
ADS
Google Scholar
Fang, J., Wang, Y., Yan, M., Wu, E., Huang, K., Zeng, H.: Highly Sensitive Detection of Infrared Photons by Nondegenerate Two-Photon Absorption Under Midinfrared Pumping. Phys. Rev. Appl. 14(6), 064035 (2020). https://doi.org/10.1103/PhysRevApplied.14.064035. Accessed 09 Mar 2021.
Article
ADS
Google Scholar
Bouchon, P., Pardo, F., Haïdar, R., Pelouard, J. -L.: Fast modal method for subwavelength gratings based on B-spline formulation. J. Opt. Soc. Am. A. 27(4), 696 (2010). https://doi.org/10.1364/JOSAA.27.000696. Accessed 03 Mar 2021.
Article
ADS
Google Scholar
Levinshtein, M., Rumyantsev, S., Shur, M.: Handbook Series on Semiconductor Parameters: Volume 1: Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb. vol. 1. World Scientific (1996). https://doi.org/10.1142/2046-vol1. https://www.worldscientific.com/worldscibooks/10.1142/2046-vol1. Accessed 12 Mar 2021.
Vavilov, V. S.: Handbook on the physical properties of Ge, Si, GaAs and InP by A Dargys and J Kundrotas. Physics-Uspekhi. 39(7), 757–757 (1996). https://doi.org/10.1070/PU1996v039n07ABEH001526. Accessed 12 Mar 2021.
Article
ADS
Google Scholar
Nayak, S. K., Sahu, T., Mohanty, S. P.: Third-order nonlinear optical susceptibilities of group IV and III–V compound semiconductors. Phys. B: Condens. Matter. 191(3), 334–340 (1993). https://doi.org/10.1016/0921-4526(93)90093-L. Accessed 20 Apr 2021.
Article
ADS
Google Scholar
Vest, B., Fix, B., Jaeck, J., Haïdar, R.: Competition between sub-bandgap linear detection and degenerate two-photon absorption in gallium arsenide photodiodes. J. Eur. Opt. Society-Rapid Publ. 12(1), 26 (2016). https://doi.org/10.1186/s41476-016-0022-8. Accessed 04 Feb 2021.
Article
Google Scholar
Vest, B., Lucas, E., Jaeck, J., Haïdar, R., Rosencher, E.: Silicon sub-bandgap photon linear detection in two-photon experiments: A photo-assisted Shockley-Read-Hall mechanism. Appl. Phys. Lett. 102(3), 031105 (2013). https://doi.org/10.1063/1.4788705. Publisher: American Institute of Physics. Accessed 14 Jan 2021.
Article
ADS
Google Scholar
Piccardo, M., Rubin, N. A., Meadowcroft, L., Chevalier, P., Yuan, H., Kimchi, J., Capasso, F.: Mid-infrared two-photon absorption in an extended-wavelength InGaAs photodetector. Appl. Phys. Lett. 112(4), 041106 (2018). https://doi.org/10.1063/1.5018619. Accessed 09 Mar 2021.
Article
ADS
Google Scholar
Cirloganu, C. M., Padilha, L. A., Fishman, D. A., Webster, S., Hagan, D. J., Stryland, E. W. V.: Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited]. Opt. Express. 19(23), 22951–22960 (2011). https://doi.org/10.1364/OE.19.022951. Publisher: Optical Society of America. Accessed 10 Mar 2021.
Article
ADS
Google Scholar
Fix, B., Jaeck, J., Bouchon, P., Héron, S., Vest, B., Haïdar, R.: High-quality-factor double Fabry-Perot plasmonic nanoresonator. Opt. Lett. 42(24), 5062–5065 (2017). https://doi.org/10.1364/OL.42.005062. Publisher: Optical Society of America. Accessed 22 Mar 2021.
Article
ADS
Google Scholar