Soskin, M. S., Vasnetsov, M. V.: Singular optics. In: Wolf, E. (ed.)*Progress in Optics*, pp. 219–276. Elsevier, Amsterdam (2001).

Google Scholar

Desyatnikov, A. S., Kivshar, Y. S., Torner, L.: Optical vortices and vortex solitons. In: Wolf, E. (ed.)*Progress in Optics*, pp. 291–391. Elsevier, Amsterdam (2005).

Google Scholar

Andrews, D. L., (Ed): Structured Light and Its Applications. Academic Press, Burlington (2008).

Google Scholar

Dennis, M. R., O’Holleran, K., Padgett, M. J.: Singular optics: Optical vortices and polarization singularities. In: Wolf, E. (ed.)*Progress in Optics*, pp. 293–363. Elsevier, Amsterdam (2009).

Google Scholar

Yao, A. M., Padgett, M. J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3(2), 161–204 (2011).

Google Scholar

Ramachandran, S., Christensen, P.: Optical vortices in fibers. Nanophotonics. 2, 455–474 (2013).

ADS
Google Scholar

Willner, A. E., Huang, H., Yan, Y., Ren, Y., Ahmed, N., Xie, G., Bao, C., Li, L., Cao, Y., Zhao, Z., Wang, J., Lavery, P. J., Tur, M., Ramachandran, S., Molisch, A. F., Ashrafi, N., Ashrafi, S.: Optical communications using orbital momentum of light. Adv. Opt. Photon. 7, 66–106 (2015).

Google Scholar

Soskin, M. S., Boriskina, S. V., Chong, Y., Dennis, M. R., Desyatnikov, A.: Singular optics and topological photonics. J. Opt. 19, 010401 (2016).

Google Scholar

Wang, J.: Advances in communications using optical vortices. Photon. Res. 4, 14–28 (2016).

Google Scholar

Shen, Y., Wang, X., Xie, Z., Min, C., Fu, X., Liu, Q., Gong, M., Yuan, X.: Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 90 (2019).

ADS
Google Scholar

Malomed, B. A.: Vortex solitons: old results and new perspectives. Physica D Nonlinear Phenom. 399, 108–137 (2019).

ADS
MathSciNet
Google Scholar

Allen, L., Padgett, M.: The Poynting vector in Laguerre - Gaussian beams and the interpretation of their angular momentum density. Opt. Commun. 184, 67–71 (2000).

ADS
Google Scholar

Bekshaev, A. Y., Soskin, M. S.: Transverse energy flows in vectorial fields of paraxial beams with singularities. Opt. Commun. 271, 332–348 (2007).

ADS
Google Scholar

K. Y. Bliokh, A. Y. B., Soskin, M. S.: Internal flows and energy circulation in light beams. J. Opt. 13, 053001 (2011).

ADS
Google Scholar

Gilson, C. R., Allen, L., Cameron, R. P., Speirits, F. C., Barnett, S. M.: The azimuthal component of Poynting’s vector and the angular momentum of light. J. Opt. 17, 125610 (2015).

ADS
Google Scholar

Kumar, V., Viswanathan, N. K.: Toplogical structures in the Poynting vector field: an experimental realization. Opt. Lett. 38, 3886–3889 (2013).

ADS
Google Scholar

Gahagan, K. T., Swartzlander, G. A.: Optical vortex trapping of particles. Opt. Lett. 21, 827–829 (1996).

ADS
Google Scholar

Nieminen, T., Parkin, S., Asavei, T., Loke, V., Heckenberg, N., Rubinsztein - Dunlop, H.: Optical vortex trapping and the dynamics of particle rotation. In: Andrews, E. D. L. (ed.)*Structured Light and Its Applications*, pp. 195–236. Academic Press, Burlington (2008).

Google Scholar

Shvedov, V. G., Desyatnikov, A. S., Rode, A. V., Izbebskaya, Y. V., Krolikowski, W. Z., Kivshar, Y.: Optical vortex beams for trapping and transport of particles in air. Appl. Phys. A. 100, 327–331 (2010).

ADS
Google Scholar

Liu, J., Liu, S. -M., Zhu, L., Wang, A. -D., Chen, S., Klitis, C., Du, C., Mo, Q., Sorel, M., Yu, S. -Y., Cai, X. -L., Wang, J.: Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light Sci. Appl. 7, 171148 (2018).

Google Scholar

Anzolin, G., Tamburini, F., Bianchini, A., Umbriaco, G., Barbieri, C.: Optical vortices with starlight. Astron. Instrum. 488, 1159–1165 (2008).

Google Scholar

Swartzlander, G. A., Ford, E. L., Abdul - Malik, R. S., Close, L. M., Peters, M. A., Palacios, D. M., Wilson, D. W.: Astronomical demonstration of an optical vortex coronograph. Opt. Express. 16, 10200–10207 (2008).

ADS
Google Scholar

Masajada, A. P., Masajada, J., Lamperska, W.: Phase recovery with the optical vortex microscope. Meas. Sci. Technol. 30, 105202 (2019).

ADS
Google Scholar

Omatsu, T., Miyamoto, K., Lee, A. J.: Wavelength - versatile optical vortex lasers. J. Opt. 19, 123002 (2017).

ADS
Google Scholar

Cheng, W., Liu, X. L., Polynkin, P.: Simultaneously spatially and temporally focused femtosecond vortex beams for laser micromachining. JOSA B. 35, 16–19 (2018).

Google Scholar

Desyatnikov, A. S., Sukhorukov, A. A., Kivshar, Y. S.: Azimuthons: Spatially modulated vortex solitons. Phys. Rev. Lett. 95, 203904 (2005).

ADS
Google Scholar

Zhang, Z., Wei, W., Sun, G., Zeng, X., Fan, W., Tang, L., Li, Y.: All - fiber short - pulse vortex laser with adjustable pulse width. Laser Phys. 30, 055102 (2020).

ADS
Google Scholar

Chen, R. S., Sun, F. L., Yao, J. N., Wang, J. H., Ming, H., Wang, A. T., Zhan, Q. W.: Mode - locked all - fiber laser generating optical vortex pulses with tunable repetition rate. Appl. Phys. Lett. 112, 261103 (2018).

ADS
Google Scholar

Liangwei, D., Fangwei, Y., Wang, H.: Suppression of azimuthal instability of ring vortex solitons. New J. Phys. 11, 073026 (2009).

Google Scholar

Quiroga-Teixeiro, M., Michinel, H.: Stable azimuthal stationary state in quintic nonlinear optical media. JOSA B. 14, 2004–2009 (1997).

ADS
Google Scholar

Briedis, D., Petersen, D. E., Edmundson, D., Krolikowski, W., Bang, O.: Ring vortex solitons in nonlocal nonlinear media. Opt. Express. 13, 435–443 (2005).

ADS
Google Scholar

Richardson, D. J., Fini, J. M., Nelson, L. E.: Space-division multiplexingin optical fibres. Nat. Photon. 7, 354–362 (2013).

ADS
Google Scholar

Krupa, K., Tonello, A., Shalaby, B. M., Fabert, M., Barthelemy, A., Millot, G., Wabnitz, S., Couderc, V.: Spatial beam self-cleaning in multimode fibres. Nat. Photon. 11, 237–241 (2017).

ADS
Google Scholar

Richardson, D. J.: Filling the Light Pipe. Science. 330, 327–328 (2010).

ADS
Google Scholar

Mumtaz, S., Essiambre, R. -J., Agrawal, G. P.: Nonlinear propagationin multimode and multicore fibers: generalization of the Manakov equations. J. Light. Technol. 31, 398–406 (2013).

ADS
Google Scholar

Aceves, A. B., De Angelis, C., Rubenchik, A. M., Turitsyn, S. K.: Multi-dimensional solitons in fiber arrays. Opt. Lett. 19, 329–331 (1994).

ADS
Google Scholar

Sukhorukov, A. P., Yangirova, V. V.: Spatio - temporal vortices: properties, generation and recording. Proc. SPIE 5949 Nonlinear Opt. Appl., 594906 (2005). https://doi.org/10.1109/eqec.2005.1567264.

Jhajj, N., Larkin, I., Rosenthal, E. W., Zahedpour, S., Wahlstrand, J. K., Milchberg, H. M.: Spatiotemporal Optical Vortices. Phys. Rev. X. 6, 031037 (2016).

Google Scholar

Chong, A., Wan, C., Chen, J., Zhan, Q.: Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photon. 14, 350–354 (2020).

ADS
Google Scholar

Rubenchik, A. M., Tkachenko, E. V., Fedoruk, M. P., Turitsyn, S. K.: Power-controlled phase-matching and instability of cw propagation in multicore optical fibers with a central core. Opt. Lett. 38(20), 4232–4235 (2013).

ADS
Google Scholar

Rubenchik, A. M., Chekhovskoy, I. S., Fedoruk, M. P., Shtyrina, O. V., Turitsyn, S. K.: Nonlinear pulse combining and pulse compression in multi-core fibers. Opt. Lett. 40(5), 721–724 (2015).

ADS
Google Scholar

Antikainen, A., Agrawal, G. P.: Supercontinuum generation in seven-core fibers. JOSA B. 32, 2927 (2019).

ADS
Google Scholar

Chekhovskoy, I. S., Shtyrina, O. V., Wabnitz, S., Fedoruk, M. P.: Finding spatiotemporal light bullets in multicore and multimode fibers. Opt. Express. 28, 7917–7928 (2020).

Google Scholar

Chekhovskoy, I. S., Rubenchik, A. M., Shtyrina, O. V., Fedoruk, M. P., Turitsyn, S. K.: Nonlinear combining and compression in multicore fibers. Phys. Rev. A. 94, 043848 (2016).

ADS
Google Scholar

Chekhovskoy, I. S., Sorokina, M. A., Rubenchik, A. M., Fedoruk, M. P., Turitsyn, S. K.: On demand spatial beam self-focusing in hexagonal multicore fiber. IEEE Photon. J. 10(1), 1–8 (2018).

Google Scholar

Agrawal, G.: Nonlinear Fiber Optics. 4th Edition. Academic Press, Boston (2013).

MATH
Google Scholar

Paasonen, V. I., Fedoruk, M. P.: A compact dissipative scheme for nonlinear Schrodinger equation (in Russian). Comput. Technol. 16, 68–73 (2011).

Google Scholar

Turitsyn, S. K., Bale, B. G., Fedoruk, M. P.: Dispersion-managed solitons in fibre systems and lasers. Phys. Rep. 521, 135–203 (2012).

ADS
Google Scholar

Akhmediev, N., Ankiewicz, A.: Solitons of the Complex Ginzburg - Landau Equation. Spat. Solitons Springer Ser. Opt. Sci. 82, 311–341 (2001).

Google Scholar

Tiofack, C. J. L., Mohamadou, A., Kofane, T. C., Moubissi, A. B.: Generation of pulse trains in nonlinear optical fibers through the generalized complex Ginzburg-Landau equation. Phys. Rev. E. 80, 066604 (2009).

ADS
Google Scholar

Inc, M., Aliyu, A. I., Yusuf, A., Baleanu, D.: Optical solitons for complex ginzburg – landau model in nonlinear optics. Optik. 158, 368–375 (2018).

ADS
Google Scholar

Martínez, A. J., Molina, M. I., Turitsyn, S. K., Kivshar, Y. S.: Nonlinear multicore waveguiding structures with balanced gain and loss. Phys. Rev. A. 91, 023822 (2015).

ADS
MathSciNet
Google Scholar

Fleischer, J. W., Bartal, G., Cohen, O., Manela, O., Segev, M., Hudock, J., Christodoulides, D. N.: Observation of discrete vortex solitons in optically induced photonic lattices. Phys. Rev. Lett. 92, 123904 (2004).

ADS
Google Scholar

Desyatnikov, A. S., Kivshar, Y. S.: Rotating optical soliton clusters. Phys. Rev. Lett. 88, 053901 (2002).

ADS
Google Scholar

Desyatnikov, A. S., Dennis, M. R., Ferrando, A.: All-optical discrete vortex switch. Phys. Rev. A. 83, 063822 (2011).

ADS
Google Scholar

Xu, Y., Sun, J., Frantz, J., Shalaev, M. I., Walasik, W., Pandey, A., Myers, J. D., Bekele, R. Y., Tsukernik, A., Sanghera, J. S., Litchinitser, N. M.: Nonlinear metasurface for structured light with tunable orbital angular momentum. Appl. Sci. 9, 958 (2019).

Google Scholar

Diebel, F., Leykam, D., Boguslawski, M., Rose, P., Denz, C., S., D. A.: All-optical switching in optically induced nonlinear waveguide couplers. Appl. Phys. Lett. 9, 261111 (2014).

ADS
Google Scholar

Leblond, H., Malomed, B. A., Mihalache, D.: Spatiotemporal vortices in optical fiber bundles. Phys. Rev. A. 77, 063804 (2008).

ADS
Google Scholar

Leblond, H., Malomed, B. A., Mihalache, D.: Spatiotemporal vortex solitons in hexagonal arrays of waveguides. Phys. Rev. A. 83, 063825 (2011).

ADS
Google Scholar

Eilenberger, F., Prater, K., Minardi, S., Geiss, R., Röpke, U., et al: Observation of discrete, vortex light bullets. Phys. Rev. X. 3, 041031 (2013).

Google Scholar

Pelinovsky, D. E., Kevrekidis, P. G., Frantzeskakis, D. J.: Persistence and stability of discrete vortices in nonlinear schrödinger lattices. Physica D Nonlinear Phenom. 212(1), 20–53 (2005).

ADS
MATH
Google Scholar

Kevrekidis, P. G., Fantzeskakis, D. J.: Stabilizing the discrete vortex of topological charge s=2. Phys. Rev. E. 72, 016606 (2005).

ADS
MathSciNet
Google Scholar

Neshev, D. N., Alexander, T. J., Ostrovskaya, E. A., Kivshar, Y. S., Martin, H., Makasyuk, I., Chen, Z.: Observation of vortex-ring discrete solitons in 2d photonic lattices. Phys. Rev. Lett. 92, 123903 (2004).

ADS
Google Scholar

Mezentsev, V. K., Musher, S. L., Ryzhenkova, I. V., Turitsyn, S. K.: Two-dimensional solitons in discrete systems. JETP Lett. 60(11), 829–835 (1994).

ADS
Google Scholar

Laedke, E. W., Spatschek, K. H., Mezentsev, V. K., Musher, S. L., Ryzhenkova, I. V., Turitsyn, S. K.: Instability of 2-dimensional solitons in discrete-systems. JETP Lett. 62(8), 677–684 (1995).

ADS
Google Scholar

Kartashov, Y., Malomed, B., Torner, L.: Solitons in nonlinear lattices. Rev. Modern Phys. 83, 247–305 (2011).

ADS
Google Scholar

Terhalle, B., Richter, T., Law, K. J. H., Göries, D., Rose, P., Alexander, T. J., Kevrekidis, P. G., Desyatnikov, A. S., Krolikowski, W., Kaiser, F., Denz, C., Kivshar, Y. S.: Observation of double-charge discrete vortex solitons in hexagonal photonic lattices. Phys. Rev. A. 79, 043821 (2009).

ADS
Google Scholar

Longhi, S.: Bloch dynamics of light waves in helical optical waveguide arrays. Phys. Rev. B. 76, 195119 (2007).

ADS
Google Scholar

Parto, M., Lopez-Aviles, H., Antonio-Lopez, J. E., Khajavikhan, M., Amezcua-Correa, R., Christodoulides, D. N.: Observation of twist-induced geometric phases and inhibition of optical tunneling via aharonov-bohm effects. Sci. Adv. 5(1), 8135 (2019).

ADS
Google Scholar

Parto, M., Lopez-Aviles, H., Khajavikhan, M., Amezcua-Correa, R., Christodoulides, D. N.: Topological aharonov-bohm suppression of optical tunneling in twisted nonlinear multicore fibers. Phys. Rev. A. 96, 043816 (2017).

ADS
Google Scholar

Castro-Castro, C., Shen, Y., Srinivasan, G., Aceves, A. B., Kevrekidis, P. G.: Light dynamics in nonlinear trimers and twisted multicore fibers. J. Nonlinear Opt. Phys. Mater. 25(04), 1650042 (2016).

ADS
Google Scholar

Calum, M., Daniele, F., Biancalana, F.: Modulation instability of discrete angular momentum in coupled fiber rings. J. Opt. 21(6), 065504 (2019).

Google Scholar

Milián, C., Kartashov, Y. V., Torner, L.: Robust ultrashort light bullets in strongly twisted waveguide arrays. Phys. Rev. Lett. 123, 133902 (2019).

ADS
Google Scholar

Kartashov, Y. V., Vysloukh, V. A., Torner, L.: Soliton shape and mobility control in optical lattices. In: Wolf, E (ed.)*Progress in Optics*, pp. 63–148. Elsevier, Amsterdam (2009).

Google Scholar

Mihalache, D., Mazilu, D., Lederer, F., Malomed, B. A., Kartashov, Y. V., Crasovan, L. -C., Torner, L.: Stable spatiotemporal solitons in bessel optical lattices. Phys. Rev. Lett. 95, 023902 (2005).

ADS
Google Scholar

Kartashov, Y. V., Carretero-González, R., Malomed, B. A., Vysloukh, V. A., Torner, L.: Multipole-mode solitons in bessel optical lattices. Opt. Express. 13(26), 10703–10710 (2005).

ADS
Google Scholar

Kartashov, Y. V., Vysloukh, V. A., Torner, L.: Stable ring-profile vortex solitons in bessel optical lattices. Phys. Rev. Lett. 94, 043902 (2005).

ADS
Google Scholar

Wang, X., Chen, Z., Kevrekidis, P. G.: Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices. Phys. Rev. Lett. 96, 083904 (2006).

ADS
Google Scholar

Dong, L., Wang, J., Wang, H., Yin, G.: Bessel lattice solitons in competing cubic-quintic nonlinear media. Phys. Rev. A. 79, 013807 (2009).

ADS
Google Scholar

Zhang, B.: Polarization vortex spatial optical solitons in Bessel optical lattices. Phys. Lett. A. 375(7), 1110–1115 (2011).

ADS
MATH
Google Scholar

Liang, J.: Discrete solitons in azimuthally modulated bessel lattices: An introduction to solitons in quasi-periodic structure. J. Sci. China Phys. Mech. Astron. 55, 2018–2023 (2012).

ADS
Google Scholar

Alexeyev, C. N., Volyar, A. V., Yavorsky, M. A.: Linear azimuthons in circular fiber arrays and optical angular momentum of discrete optical vortices. Phys. Rev. A. 80, 063821 (2009).

ADS
Google Scholar

Fischer, R., Neshev, D. N., López-Aguayo, S., Desyatnikov, A. S., Sukhorukov, A. A., Krolikowski, W., Kivshar, Y. S.: Light localization in azimuthally modulated bessel photonic lattices. J. Mater. Sci. Mater. Electron. 18, 277–283 (2007).

Google Scholar

Turitsyn, S. K., Rubenchik, A. M., Fedoruk, M. P., Tkachenko, E.: Coherent propagation and energy transfer in low-dimension nonlinear arrays. Phys. Rev. A. 86, 031804 (2012).

ADS
Google Scholar

Hizanidis, K., Droulias, S., Tsopelas, I., Efremidis, N. K., Christodoulides, D. N.: Centrally coupled circular array of optical waveguides: The existence of stable steady-state continuous waves and breathing modes. Phys. Scr.T107(5), 13–19 (2004).

ADS
MATH
Google Scholar

Hizanidis, K., Droulias, S., Tsopelas, I., Efremdis, N. K., Christodoulides, D. N.: Localized modes in a circular array of coupled nonlinear optical waveguides. Int. J. Bifurcation Chaos. 16(06), 1739–1752 (2006).

ADS
MathSciNet
MATH
Google Scholar

Hadzievski, L., Maluckov, A., Rubenchik, A., Turitsyn, S.: Stable optical vortices in nonlinear multicore fibers. Light Sci. Appl. 4, 314 (2015).

Google Scholar

Radosavljević, A., Daničić, A., Petrovic, J., Maluckov, A., Hadzievski, L.: Coherent light propagation through multicore optical fibers with linearly coupled cores. J. Opt. Soc. Am. B. 32(12), 2520–2527 (2015).

ADS
Google Scholar

Chan, F. Y. M., Lau, A. P. T., Tam, H. -Y.: Mode coupling dynamics and communication strategies for multi-core fiber systems. Opt. Express. 20(4), 4548–4563 (2012).

ADS
Google Scholar

Mendinueta, J. M. D., Shinada, S., Hirota, Y., Furukawa, H., Wada, N.: High-capacity super-channel-enabled multi-core fiber optical switching system for converged inter/intra data center and edge optical networks. IEEE J. Sel. Topics Quantum Electron. 26(4), 1–13 (2020).

Google Scholar

Richardson, D. J., Nilsson, J., Clarkson, W. A.: High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B. 27(11), 63–92 (2010).

Google Scholar

Klenke, A., Müller, M., Stark, H., Kienel, M., Jauregui, C., Tünnermann, A., Limpert, J.: Coherent beam combination of ultrafast fiber lasers. IEEE J. Sel. Topics Quantum Electron. 24, 1–9 (2018).

Google Scholar

Klenke, A., Müller, M., Stark, H., Stutzki, F., Hupel, C., Schreiber, T., Tünnermann, A., Limpert, J.: Coherently combined 16-channel multicore fiber laser system. Opt. Lett. 43(7), 1519–1522 (2018).

ADS
Google Scholar

Andrianov, A. V., Kalinin, N. A., Anashkina, E. A., Egorova, O. N., Lipatov, D. S., Kim, A. V., Semjonov, S. L., Litvak, A. G.: Selective excitation and amplification of peak-power-scalable out-of-phase supermode in yb-doped multicore fiber. J. Light. Technol. 38(8), 2464–2470 (2020).

ADS
Google Scholar

Huo, Y., Cheo, P. K., King, G. G.: Fundamental mode operation of a 19-core phase-locked yb-doped fiber amplifier. Opt. Express. 12(25), 6230–6239 (2004).

ADS
Google Scholar

Alexeyev, C. N., Volyar, A. V., Yavorsky, M. A.: Linear azimuthons in circular fiber arrays and optical angular momentum of discrete optical vortices. Phys. Rev. A. 80, 063821 (2009).

ADS
Google Scholar

Bozinovic, N., Golowich, S., Kristensen, P., Ramachandran, S.: Control of orbital angular momentum of light with optical fibers. Opt. Lett. 37(13), 2451–2453 (2012).

ADS
Google Scholar

Golshani, M., Weimann, S., Jafari, K., Nezhad, M. K., Langari, A., Bahrampour, A. R., Eichelkraut, T., Mahdavi, S. M., Szameit, A.: Impact of loss on the wave dynamics in photonic waveguide lattices. Phys. Rev. Lett. 113, 123903 (2014).

ADS
Google Scholar

Kevrekidis, P. G., Frantzeskakis, D. J.: Stabilizing the discrete vortex of topological charge *s*=2. Phys. Rev. E. 72, 016606 (2005).

ADS
MathSciNet
Google Scholar

Neshev, D. N., Alexander, T. J., Ostrovskaya, E. A., Kivshar, Y. S., Martin, H., Makasyuk, I., Chen, Z.: Observation of discrete vortex solitons in optically induced photonic lattices. Phys. Rev. Lett. 92, 123903 (2004).

ADS
Google Scholar

Aceves, A. B., Luther, G. G., De Angelis, C., Rubenchik, A. M., Turitsyn, S. K.: Energy localization in nonlinearfiber arrays: Collapse-effect compresor. Phys. Rev. Lett. 75, 73–76 (1995).

ADS
Google Scholar

Chan, F. Y. M. A., Lau, P. T., H.-Ya., T.: Mode coupling dynamics and communication strategies for multi-core fiber systems. Opt. Express. 20, 4548–4563 (2012).

ADS
Google Scholar

Zhu, B., Taunay, T. F. M., Yan, F., Fishteyn, M., Monberg, E., V., D. F.: Seven-core multicore fiber transmissions for passive optical network. Opt. Express. 18(11), 11117–11122 (2010).

ADS
Google Scholar

Silberberg, Y.: Collapse of optical pulses. Opt. Lett. 15(22), 1282–1284 (1990).

ADS
Google Scholar

Minardi, S., Eilengerber, F., Kartashov, Y. K., Szameit, A., Ropke, U., Kobele, J., Schuster, K., Bartelt, H., Nolte, S., Torner, L., Lederer, F., Tünnermann, A., Pertsch, T.: Three-dimensional light bullets in arrays of waveguides. Phys. Rev. Lett. 105, 293901 (2010).

Google Scholar

Eilenberger, F., Minardi, S., Szameit, A., Röpke, U., Kobelke, J., Schuster, K., Bartelt, H., Nolte, S., Torner, L., Lederer, F., Tünnermann, A., Pertsch, T.: Evolution dynamics of discrete-continuous light bullets. Phys. Rev. A. 84, 013836 (2011).

ADS
Google Scholar

Shalaby, M., Kermène, V., Pagnoux, D., Desfarges-Berthelemot, A., Barthélémy, A., Popp, A., Abdou Ahmed, M., Voss, A., Graf, T.: 19-cores Yb-fiber laser with mode selection for improved beam brightness. Appl. Phys. B Lasers Opt. 100(4), 859 (2010).

ADS
Google Scholar

Eilenberger, F., Minardi, S., Szameit, A., Röpke, U., Kobelke, J., Schuster, K., Bartelt, H., Nolte, S., Tünnermann, A., Th., P.: Light bullets in waveguide arrays: spacetime-coupling, spectral symmetry breaking and superluminal decay. Opt. Express. 19(23), 23171–23187 (2011).

ADS
Google Scholar

Pertsch, T., Peschel, U., Kobelke, J., Schuster, K., Bartelt, H., Nolte, S., Tünnermann, A., Lederer, F.: Nonlinearity and disorder in fiber arrays. Phys. Rev. Lett. 93(5), 053901 (2004).

ADS
Google Scholar

Solli, D. R., Ropers, C., Koonath, P., Jalali, B.: Optical Rogue Waves. Nature. 450, 1054–1057 (2007).

ADS
Google Scholar

Sukhorukov, A. A., Kivshar, Y. S.: Slow-light optical bullets in arrays of nonlinear Bragg-grating waveguides. Phys. Rev. Lett. 97(23), 233901 (2006).

ADS
Google Scholar

Lushnikov, P. M., Vladimirova, N.: Nonlinear combining of laser beams. Opt. Lett. 39, 3429–3432 (2014).

ADS
Google Scholar

Edmundson, D. E., Enns, R. H.: Robust bistable light bullets. Opt. Lett. 17(8), 586–588 (1992).

ADS
Google Scholar

Wise, F., Trapani, P.: Spatiotemporal Solitons. Opt. Photon. News. 13(2), 28–32 (2002).

ADS
Google Scholar

Malomed, B. A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B. 7, 53–72 (2005).

ADS
Google Scholar

Laedke, E. W., Spatschek, K. H., Turitsyn, S. K.: Stability of discrete solitons and quasicollapse to intrinsically localized modes. Phys. Rev. Lett. 73, 1055–1059 (1994).

ADS
Google Scholar

Laedke, E. W., Spatschek, K. H., Turitsyn, S. K., Mezentsev, V. K.: Analytic criterion for soliton instability in a nonlinear fiber array. Phys. Rev. E. 52, 5549 (1995).

ADS
Google Scholar

Majus, D., Tamosauskas, G., Grazuleviciute, I., Garejev, N., Lotti, A., Couairon, A., Faccio, D., Dubietis, A.: Nature of spatiotemporal light bullets in bulk Kerr media. Phys. Rev. Lett. 112, 193901 (2014).

ADS
Google Scholar

Tran, T. X., Duong, D. C., Biancalana, F.: Light bullets in nonlinear waveguide arrays under the influence of dispersion and the Raman effect. Phys. Rev. A. 90(2), 023857 (2014).

ADS
Google Scholar

Kienel, M., Müller, M., Demmler, S., Rothhardt, J., Klenke, A., Eidam, T., Limpert, J., A., T.: Coherent beam combination of Yb:YAG single-crystal rod amplifiers. Opt. Lett. 39(11), 3278–3281 (2014).

ADS
Google Scholar

Lahini, Y., Frumker, E., Silberberg, Y., Droulias, S., Hizanidis, K., Morandotti, R., Christodoulides, D. N.: Discrete X-wave formation in nonlinear waveguide arrays. Phys. Rev. Lett. 98(2), 023901 (2007).

ADS
Google Scholar

Higham, N.: The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. 26(4), 1179–1193 (2005).

MathSciNet
MATH
Google Scholar

Andrews, D. L., Babiker, M., (Eds): The Angular Momentum of Light. Cambridge University Press, Cambridge (2012).

Google Scholar

Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C., Woerdman, J. P.: Orbital angular momentum of light and the transformation of laguerre - gaussian laser modes. Phys. Rev. A. 45, 8185 (1992).

ADS
Google Scholar

Wang, J.: Twisted optical communications using orbital angular momentum. Sci. China Phys. Mech. Astron. 62, 034201 (2019).

Google Scholar

Bozinovic, N., Yue, Y., Ren, Y., Tur, M., Kristensen, P., Huang, H., E., W. A., Ramachandran, S.: Terabit - scale orbital angular momentum mode division multiplexing in fibers. Science. 340, 1545–1548 (2013).

ADS
Google Scholar

Picardi, M. F., Bliokh, K. Y., Rodriguez - Fortuno, F. J., Alpeggiani, F., Nori, F.: Angular momenta, helicity, and other properties of dielectric - fiber and metallic - wire modes. Optica. 5, 1016–1026 (2018).

ADS
Google Scholar

Bliokh, K. Y., Rodriguez - Fortuno, F. J., Nori, F., Zayats, A. V.: Spin - orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

ADS
Google Scholar

Alexeyev, C. N., Alexeyev, A. N., Lapin, B. P., Yavorsky, M. A.: Spin - orbit - interactions - induced generation of optical vortices in multihelicoidal fibers. Phys. Rev. A. 88, 063814 (2013).

ADS
Google Scholar

Gregg, P., Kristensen, P., Rubano, A., Golowich, S., Marrucci, L., Ramachandran, S.: Enhanced spin orbit interaction of light in highly confining optical fibers for mode division multiplexing. Nat. Commun. 10, 4707 (2019).

ADS
Google Scholar

Sharma, M., Pradhan, P., Ung, B.: Endlessly mono - radial annular core photonic crystal fiber for the broadband transmission and supercontinuum generation of vortex beams. Sci. Rep. 9, 2488 (2019).

ADS
Google Scholar

Prabhakar, G., Gregg, P., Rishoj, L., Kristensen, P., Ramachandran, S.: Octave - wide supercontinuum generation of light - carrying orbital angular momentum. Opt. Express. 27, 11547–11556 (2019).

ADS
Google Scholar

Rottwitt, K., Koefoed, J. G., Ingerslev, K., Kristensen, P.: Inter - modal raman amplification of oam fiber modes. APL Photon. 4, 030802 (2019).

ADS
Google Scholar

Liu, X., Christensen, E. N., Rottwitt, K., Ramachandran, S.: Nonlinear four-wave mixing with enhanced diversity and selectivity via spin and orbital angular momentum conservation. APL Photon. 5, 010802 (2020).

ADS
Google Scholar

Mokhun, I., Mokhun, A., Viktorovskaya, J.: Singularities of the poynting vector and the structure of optical field. Proc. SPIE. 6254, 625409 (2006).

Google Scholar

Novitsky, A. V., Barkovsky, L. M.: Poynting singularities in optical dynamic systems. Phys. Rev. A. 79, 033821 (2009).

ADS
Google Scholar

Berry, M. V.: Optical currents. J. Opt. A Pure Appl. Opt. 11, 094001 (2009).

ADS
Google Scholar

Nye, J. F., Berry, M. V.: Dislocations in wave trains. Proc. R. Soc. A Math. Phys. Eng. Sci.336, 165–190 (1974).

ADS
MathSciNet
MATH
Google Scholar

Basistiy, I. V., Soskin, M. S., Vasnetsov, M. V.: Optical wavefront dislocations and their properties. Opt. Commun. 119, 604–612 (1995).

ADS
Google Scholar

Baranova, N. B., Mamaev, A. V., Pilipetskii, N. F., Zel’dovich, B. Y.: Wave - front dislocations: topological limitations for adaptive systems with phase conjugation. JOSA. 73, 525–528 (1983).

ADS
Google Scholar

Basistiy, I. V., Bazhenov, V. Y., Soskin, M. S., Vasnetsov, M. V.: Optics of light beams with screw dislocations. Opt. Commun. 103, 422–428 (1993).

ADS
Google Scholar

Molina-Terriza, G.: Vortex transformation and vortex dynamics in optical fields. In: Andrews, D. L., Babiker, M. (eds.)*The Angular Momentum of Light*, pp. 31–50 (2013). https://doi.org/10.1017/cbo9780511795213.003.

Khonina, S. N., Kazanskiy, N. L., Soifer, V. A.: Optical vortices in a fiber: Mode division multiplexing and multimode self - imaging. Recent Prog. Opt. Fiber Res. InTech. 15, 327–352 (2012).

Google Scholar

Gregg, P., Kristensen, P., Ramachandran, S.: Conservation of orbital angular momentum in air - core optical fibers. Optica. 2(3), 267–270 (2015).

ADS
Google Scholar

Borda-Hernandez, J. A., Serpa-Imbett, C. M., Hernandez-Figueroa, H. E.: Vortex polymer optical fiber with 64 stable oam states. Polymers. 12, 2776 (2020).

Google Scholar

Chen, S., Wang, J.: Theorethical analyses on orbital angular momentum modes in conventional graded - index multimode fibre. Sci. Rep. 7, 3990 (2017).

ADS
Google Scholar

Xi, X. M., Wong, G. K. L., Frosz, M. H., Babic, F., Ahmed, G., Jiang, X., Euser, T. G., Russell, P. S. J.: Orbital - angular - momentum preserving helical bloch modes in twisted photonic crystal fibers. Optica. 1, 165–169 (2014).

ADS
Google Scholar

Li, H., Ren, G., Lian, Y., Zhu, B., Tang, M., Zhao, Y., Jian, S.: Broadband angular momentum transmission using a hollow - core photonic band gap fiber. Opt. Lett. 41, 3591–3594 (2016).

ADS
Google Scholar

Li, H., Ren, G., Zhu, B., Gao, Y., Yin, B., Wang, J., Jian, S.: Guiding terahertz orbital angular momentum beams in multimode kagome hollow-core fibers. Opt. Lett. 42, 179–182 (2017).

ADS
Google Scholar

Allen, L., Barnett, S. M., Padgett, M. J.: Optical Angular Momentum. Institute of Physics Publishing, Bristol (2003).

Google Scholar

Ndagano, B., Bruning, R., McLaren, M., Duparre, M., Forbes, A.: Fiber propagation of vector modes. Opt. Express. 23, 17330–17336 (2015).

ADS
Google Scholar

Bliokh, K. Y., Bekshaev, A. Y., Nori, F.: Optical momentum, spin, and angular momentum in dispersive media. Phys. Rev. Lett. 119, 073901 (2017).

ADS
Google Scholar

Volyar, A. V., Fadeeva, T. A.: Angular momentum of the felds of a few – mode fber: I. a perturbed optical vortex. Tech. Phys. Lett. 23, 848–851 (1997).

ADS
Google Scholar

Pryamikov, A. D., Alagashev, G. K.: Features of light leakage from the negative curvature hollow core fbres. Opt. Eng. 57, 066106 (2018).

ADS
Google Scholar

Pryamikov, A. D., Biriukov, A. S., Kosolapov, A. F., Plotnichenko, V. G., Semjonov, S. L., Dianov, E. M.: Demonstration of a waveguide regime for a silica hollow – core microstructured optical fbre with a negative curvature of the core boundary in the spectral region > 3.5 *μ*m. Opt. Express. 19, 1441–1448 (2011).

ADS
Google Scholar

Pryamikov, A., Alagashev, G., Falkovich, G., Turitsyn, S.: Light transport and vortex - supported wave-guiding in microstructured optical fbres. Sci. Rep. 10, 2507 (2020).

ADS
Google Scholar

Luan, F., George, A. K., Hedley, T. D., Pearce, G. J., Bird, D. M., Knight, J. C., J., R. P. S.: All – solid band gap fibres. Opt. Lett. 29, 2369–2371 (2004).

ADS
Google Scholar

Kotlyar, V. V., Kovalev, A. A., Porfirev, A. P.: Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl. Opt. 56(14), 4095–4104 (2017).

ADS
Google Scholar

Chekhovskoy, I. S., Paasonen, V. I., Shtyrina, O. V., Fedoruk, M. P.: Numerical approaches to simulation ofmulti-core fbers. J. Comput. Phys. 334, 31–34 (2017).

ADS
MathSciNet
MATH
Google Scholar

Sherman, J., Morrison, W. J.: Adjustment of an inverse matrix corresponding to changes in a given column or a given row of the original matrix. Ann. Math. Stat. 20(4), 621–622 (1949).

Google Scholar

Skiba, Y. N.: A non-iterative implicit algorithm for the solution of advectiondifusion equation on a sphere. Int. J. Numer. Methods Fluids. 78(5), 257–282 (2015).

ADS
Google Scholar

Chekhovskoy, I. S.: Using pade approximation for solving systems of nonlinear schrodinger equations by the split-step fourier method (in russian). Comput. Technol. 20(3), 99–108 (2015).

Google Scholar

Taha, T. R., Ablowitz, M. J.: Analytical and numerical aspects of certain nonlinear evolution equations. ii. numerical, nonlinear schrodinger equation. J. Comput. Phys. 55(2), 201–230 (1984).

ADS
MathSciNet
MATH
Google Scholar

Moler, C., Loan, C. V.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003).

ADS
MathSciNet
MATH
Google Scholar

Varga, R. S.: Matrix Iterative Analysis, 2nd Edition. Springer, Berlin Heidelberg (2002).

Google Scholar