Soskin, M. S., Vasnetsov, M. V.: Singular optics. In: Wolf, E. (ed.)Progress in Optics, pp. 219–276. Elsevier, Amsterdam (2001).
Google Scholar
Desyatnikov, A. S., Kivshar, Y. S., Torner, L.: Optical vortices and vortex solitons. In: Wolf, E. (ed.)Progress in Optics, pp. 291–391. Elsevier, Amsterdam (2005).
Google Scholar
Andrews, D. L., (Ed): Structured Light and Its Applications. Academic Press, Burlington (2008).
Google Scholar
Dennis, M. R., O’Holleran, K., Padgett, M. J.: Singular optics: Optical vortices and polarization singularities. In: Wolf, E. (ed.)Progress in Optics, pp. 293–363. Elsevier, Amsterdam (2009).
Google Scholar
Yao, A. M., Padgett, M. J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3(2), 161–204 (2011).
Google Scholar
Ramachandran, S., Christensen, P.: Optical vortices in fibers. Nanophotonics. 2, 455–474 (2013).
ADS
Google Scholar
Willner, A. E., Huang, H., Yan, Y., Ren, Y., Ahmed, N., Xie, G., Bao, C., Li, L., Cao, Y., Zhao, Z., Wang, J., Lavery, P. J., Tur, M., Ramachandran, S., Molisch, A. F., Ashrafi, N., Ashrafi, S.: Optical communications using orbital momentum of light. Adv. Opt. Photon. 7, 66–106 (2015).
Google Scholar
Soskin, M. S., Boriskina, S. V., Chong, Y., Dennis, M. R., Desyatnikov, A.: Singular optics and topological photonics. J. Opt. 19, 010401 (2016).
Google Scholar
Wang, J.: Advances in communications using optical vortices. Photon. Res. 4, 14–28 (2016).
Google Scholar
Shen, Y., Wang, X., Xie, Z., Min, C., Fu, X., Liu, Q., Gong, M., Yuan, X.: Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 90 (2019).
ADS
Google Scholar
Malomed, B. A.: Vortex solitons: old results and new perspectives. Physica D Nonlinear Phenom. 399, 108–137 (2019).
ADS
MathSciNet
Google Scholar
Allen, L., Padgett, M.: The Poynting vector in Laguerre - Gaussian beams and the interpretation of their angular momentum density. Opt. Commun. 184, 67–71 (2000).
ADS
Google Scholar
Bekshaev, A. Y., Soskin, M. S.: Transverse energy flows in vectorial fields of paraxial beams with singularities. Opt. Commun. 271, 332–348 (2007).
ADS
Google Scholar
K. Y. Bliokh, A. Y. B., Soskin, M. S.: Internal flows and energy circulation in light beams. J. Opt. 13, 053001 (2011).
ADS
Google Scholar
Gilson, C. R., Allen, L., Cameron, R. P., Speirits, F. C., Barnett, S. M.: The azimuthal component of Poynting’s vector and the angular momentum of light. J. Opt. 17, 125610 (2015).
ADS
Google Scholar
Kumar, V., Viswanathan, N. K.: Toplogical structures in the Poynting vector field: an experimental realization. Opt. Lett. 38, 3886–3889 (2013).
ADS
Google Scholar
Gahagan, K. T., Swartzlander, G. A.: Optical vortex trapping of particles. Opt. Lett. 21, 827–829 (1996).
ADS
Google Scholar
Nieminen, T., Parkin, S., Asavei, T., Loke, V., Heckenberg, N., Rubinsztein - Dunlop, H.: Optical vortex trapping and the dynamics of particle rotation. In: Andrews, E. D. L. (ed.)Structured Light and Its Applications, pp. 195–236. Academic Press, Burlington (2008).
Google Scholar
Shvedov, V. G., Desyatnikov, A. S., Rode, A. V., Izbebskaya, Y. V., Krolikowski, W. Z., Kivshar, Y.: Optical vortex beams for trapping and transport of particles in air. Appl. Phys. A. 100, 327–331 (2010).
ADS
Google Scholar
Liu, J., Liu, S. -M., Zhu, L., Wang, A. -D., Chen, S., Klitis, C., Du, C., Mo, Q., Sorel, M., Yu, S. -Y., Cai, X. -L., Wang, J.: Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light Sci. Appl. 7, 171148 (2018).
Google Scholar
Anzolin, G., Tamburini, F., Bianchini, A., Umbriaco, G., Barbieri, C.: Optical vortices with starlight. Astron. Instrum. 488, 1159–1165 (2008).
Google Scholar
Swartzlander, G. A., Ford, E. L., Abdul - Malik, R. S., Close, L. M., Peters, M. A., Palacios, D. M., Wilson, D. W.: Astronomical demonstration of an optical vortex coronograph. Opt. Express. 16, 10200–10207 (2008).
ADS
Google Scholar
Masajada, A. P., Masajada, J., Lamperska, W.: Phase recovery with the optical vortex microscope. Meas. Sci. Technol. 30, 105202 (2019).
ADS
Google Scholar
Omatsu, T., Miyamoto, K., Lee, A. J.: Wavelength - versatile optical vortex lasers. J. Opt. 19, 123002 (2017).
ADS
Google Scholar
Cheng, W., Liu, X. L., Polynkin, P.: Simultaneously spatially and temporally focused femtosecond vortex beams for laser micromachining. JOSA B. 35, 16–19 (2018).
Google Scholar
Desyatnikov, A. S., Sukhorukov, A. A., Kivshar, Y. S.: Azimuthons: Spatially modulated vortex solitons. Phys. Rev. Lett. 95, 203904 (2005).
ADS
Google Scholar
Zhang, Z., Wei, W., Sun, G., Zeng, X., Fan, W., Tang, L., Li, Y.: All - fiber short - pulse vortex laser with adjustable pulse width. Laser Phys. 30, 055102 (2020).
ADS
Google Scholar
Chen, R. S., Sun, F. L., Yao, J. N., Wang, J. H., Ming, H., Wang, A. T., Zhan, Q. W.: Mode - locked all - fiber laser generating optical vortex pulses with tunable repetition rate. Appl. Phys. Lett. 112, 261103 (2018).
ADS
Google Scholar
Liangwei, D., Fangwei, Y., Wang, H.: Suppression of azimuthal instability of ring vortex solitons. New J. Phys. 11, 073026 (2009).
Google Scholar
Quiroga-Teixeiro, M., Michinel, H.: Stable azimuthal stationary state in quintic nonlinear optical media. JOSA B. 14, 2004–2009 (1997).
ADS
Google Scholar
Briedis, D., Petersen, D. E., Edmundson, D., Krolikowski, W., Bang, O.: Ring vortex solitons in nonlocal nonlinear media. Opt. Express. 13, 435–443 (2005).
ADS
Google Scholar
Richardson, D. J., Fini, J. M., Nelson, L. E.: Space-division multiplexingin optical fibres. Nat. Photon. 7, 354–362 (2013).
ADS
Google Scholar
Krupa, K., Tonello, A., Shalaby, B. M., Fabert, M., Barthelemy, A., Millot, G., Wabnitz, S., Couderc, V.: Spatial beam self-cleaning in multimode fibres. Nat. Photon. 11, 237–241 (2017).
ADS
Google Scholar
Richardson, D. J.: Filling the Light Pipe. Science. 330, 327–328 (2010).
ADS
Google Scholar
Mumtaz, S., Essiambre, R. -J., Agrawal, G. P.: Nonlinear propagationin multimode and multicore fibers: generalization of the Manakov equations. J. Light. Technol. 31, 398–406 (2013).
ADS
Google Scholar
Aceves, A. B., De Angelis, C., Rubenchik, A. M., Turitsyn, S. K.: Multi-dimensional solitons in fiber arrays. Opt. Lett. 19, 329–331 (1994).
ADS
Google Scholar
Sukhorukov, A. P., Yangirova, V. V.: Spatio - temporal vortices: properties, generation and recording. Proc. SPIE 5949 Nonlinear Opt. Appl., 594906 (2005). https://doi.org/10.1109/eqec.2005.1567264.
Jhajj, N., Larkin, I., Rosenthal, E. W., Zahedpour, S., Wahlstrand, J. K., Milchberg, H. M.: Spatiotemporal Optical Vortices. Phys. Rev. X. 6, 031037 (2016).
Google Scholar
Chong, A., Wan, C., Chen, J., Zhan, Q.: Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photon. 14, 350–354 (2020).
ADS
Google Scholar
Rubenchik, A. M., Tkachenko, E. V., Fedoruk, M. P., Turitsyn, S. K.: Power-controlled phase-matching and instability of cw propagation in multicore optical fibers with a central core. Opt. Lett. 38(20), 4232–4235 (2013).
ADS
Google Scholar
Rubenchik, A. M., Chekhovskoy, I. S., Fedoruk, M. P., Shtyrina, O. V., Turitsyn, S. K.: Nonlinear pulse combining and pulse compression in multi-core fibers. Opt. Lett. 40(5), 721–724 (2015).
ADS
Google Scholar
Antikainen, A., Agrawal, G. P.: Supercontinuum generation in seven-core fibers. JOSA B. 32, 2927 (2019).
ADS
Google Scholar
Chekhovskoy, I. S., Shtyrina, O. V., Wabnitz, S., Fedoruk, M. P.: Finding spatiotemporal light bullets in multicore and multimode fibers. Opt. Express. 28, 7917–7928 (2020).
Google Scholar
Chekhovskoy, I. S., Rubenchik, A. M., Shtyrina, O. V., Fedoruk, M. P., Turitsyn, S. K.: Nonlinear combining and compression in multicore fibers. Phys. Rev. A. 94, 043848 (2016).
ADS
Google Scholar
Chekhovskoy, I. S., Sorokina, M. A., Rubenchik, A. M., Fedoruk, M. P., Turitsyn, S. K.: On demand spatial beam self-focusing in hexagonal multicore fiber. IEEE Photon. J. 10(1), 1–8 (2018).
Google Scholar
Agrawal, G.: Nonlinear Fiber Optics. 4th Edition. Academic Press, Boston (2013).
MATH
Google Scholar
Paasonen, V. I., Fedoruk, M. P.: A compact dissipative scheme for nonlinear Schrodinger equation (in Russian). Comput. Technol. 16, 68–73 (2011).
Google Scholar
Turitsyn, S. K., Bale, B. G., Fedoruk, M. P.: Dispersion-managed solitons in fibre systems and lasers. Phys. Rep. 521, 135–203 (2012).
ADS
Google Scholar
Akhmediev, N., Ankiewicz, A.: Solitons of the Complex Ginzburg - Landau Equation. Spat. Solitons Springer Ser. Opt. Sci. 82, 311–341 (2001).
Google Scholar
Tiofack, C. J. L., Mohamadou, A., Kofane, T. C., Moubissi, A. B.: Generation of pulse trains in nonlinear optical fibers through the generalized complex Ginzburg-Landau equation. Phys. Rev. E. 80, 066604 (2009).
ADS
Google Scholar
Inc, M., Aliyu, A. I., Yusuf, A., Baleanu, D.: Optical solitons for complex ginzburg – landau model in nonlinear optics. Optik. 158, 368–375 (2018).
ADS
Google Scholar
Martínez, A. J., Molina, M. I., Turitsyn, S. K., Kivshar, Y. S.: Nonlinear multicore waveguiding structures with balanced gain and loss. Phys. Rev. A. 91, 023822 (2015).
ADS
MathSciNet
Google Scholar
Fleischer, J. W., Bartal, G., Cohen, O., Manela, O., Segev, M., Hudock, J., Christodoulides, D. N.: Observation of discrete vortex solitons in optically induced photonic lattices. Phys. Rev. Lett. 92, 123904 (2004).
ADS
Google Scholar
Desyatnikov, A. S., Kivshar, Y. S.: Rotating optical soliton clusters. Phys. Rev. Lett. 88, 053901 (2002).
ADS
Google Scholar
Desyatnikov, A. S., Dennis, M. R., Ferrando, A.: All-optical discrete vortex switch. Phys. Rev. A. 83, 063822 (2011).
ADS
Google Scholar
Xu, Y., Sun, J., Frantz, J., Shalaev, M. I., Walasik, W., Pandey, A., Myers, J. D., Bekele, R. Y., Tsukernik, A., Sanghera, J. S., Litchinitser, N. M.: Nonlinear metasurface for structured light with tunable orbital angular momentum. Appl. Sci. 9, 958 (2019).
Google Scholar
Diebel, F., Leykam, D., Boguslawski, M., Rose, P., Denz, C., S., D. A.: All-optical switching in optically induced nonlinear waveguide couplers. Appl. Phys. Lett. 9, 261111 (2014).
ADS
Google Scholar
Leblond, H., Malomed, B. A., Mihalache, D.: Spatiotemporal vortices in optical fiber bundles. Phys. Rev. A. 77, 063804 (2008).
ADS
Google Scholar
Leblond, H., Malomed, B. A., Mihalache, D.: Spatiotemporal vortex solitons in hexagonal arrays of waveguides. Phys. Rev. A. 83, 063825 (2011).
ADS
Google Scholar
Eilenberger, F., Prater, K., Minardi, S., Geiss, R., Röpke, U., et al: Observation of discrete, vortex light bullets. Phys. Rev. X. 3, 041031 (2013).
Google Scholar
Pelinovsky, D. E., Kevrekidis, P. G., Frantzeskakis, D. J.: Persistence and stability of discrete vortices in nonlinear schrödinger lattices. Physica D Nonlinear Phenom. 212(1), 20–53 (2005).
ADS
MATH
Google Scholar
Kevrekidis, P. G., Fantzeskakis, D. J.: Stabilizing the discrete vortex of topological charge s=2. Phys. Rev. E. 72, 016606 (2005).
ADS
MathSciNet
Google Scholar
Neshev, D. N., Alexander, T. J., Ostrovskaya, E. A., Kivshar, Y. S., Martin, H., Makasyuk, I., Chen, Z.: Observation of vortex-ring discrete solitons in 2d photonic lattices. Phys. Rev. Lett. 92, 123903 (2004).
ADS
Google Scholar
Mezentsev, V. K., Musher, S. L., Ryzhenkova, I. V., Turitsyn, S. K.: Two-dimensional solitons in discrete systems. JETP Lett. 60(11), 829–835 (1994).
ADS
Google Scholar
Laedke, E. W., Spatschek, K. H., Mezentsev, V. K., Musher, S. L., Ryzhenkova, I. V., Turitsyn, S. K.: Instability of 2-dimensional solitons in discrete-systems. JETP Lett. 62(8), 677–684 (1995).
ADS
Google Scholar
Kartashov, Y., Malomed, B., Torner, L.: Solitons in nonlinear lattices. Rev. Modern Phys. 83, 247–305 (2011).
ADS
Google Scholar
Terhalle, B., Richter, T., Law, K. J. H., Göries, D., Rose, P., Alexander, T. J., Kevrekidis, P. G., Desyatnikov, A. S., Krolikowski, W., Kaiser, F., Denz, C., Kivshar, Y. S.: Observation of double-charge discrete vortex solitons in hexagonal photonic lattices. Phys. Rev. A. 79, 043821 (2009).
ADS
Google Scholar
Longhi, S.: Bloch dynamics of light waves in helical optical waveguide arrays. Phys. Rev. B. 76, 195119 (2007).
ADS
Google Scholar
Parto, M., Lopez-Aviles, H., Antonio-Lopez, J. E., Khajavikhan, M., Amezcua-Correa, R., Christodoulides, D. N.: Observation of twist-induced geometric phases and inhibition of optical tunneling via aharonov-bohm effects. Sci. Adv. 5(1), 8135 (2019).
ADS
Google Scholar
Parto, M., Lopez-Aviles, H., Khajavikhan, M., Amezcua-Correa, R., Christodoulides, D. N.: Topological aharonov-bohm suppression of optical tunneling in twisted nonlinear multicore fibers. Phys. Rev. A. 96, 043816 (2017).
ADS
Google Scholar
Castro-Castro, C., Shen, Y., Srinivasan, G., Aceves, A. B., Kevrekidis, P. G.: Light dynamics in nonlinear trimers and twisted multicore fibers. J. Nonlinear Opt. Phys. Mater. 25(04), 1650042 (2016).
ADS
Google Scholar
Calum, M., Daniele, F., Biancalana, F.: Modulation instability of discrete angular momentum in coupled fiber rings. J. Opt. 21(6), 065504 (2019).
Google Scholar
Milián, C., Kartashov, Y. V., Torner, L.: Robust ultrashort light bullets in strongly twisted waveguide arrays. Phys. Rev. Lett. 123, 133902 (2019).
ADS
Google Scholar
Kartashov, Y. V., Vysloukh, V. A., Torner, L.: Soliton shape and mobility control in optical lattices. In: Wolf, E (ed.)Progress in Optics, pp. 63–148. Elsevier, Amsterdam (2009).
Google Scholar
Mihalache, D., Mazilu, D., Lederer, F., Malomed, B. A., Kartashov, Y. V., Crasovan, L. -C., Torner, L.: Stable spatiotemporal solitons in bessel optical lattices. Phys. Rev. Lett. 95, 023902 (2005).
ADS
Google Scholar
Kartashov, Y. V., Carretero-González, R., Malomed, B. A., Vysloukh, V. A., Torner, L.: Multipole-mode solitons in bessel optical lattices. Opt. Express. 13(26), 10703–10710 (2005).
ADS
Google Scholar
Kartashov, Y. V., Vysloukh, V. A., Torner, L.: Stable ring-profile vortex solitons in bessel optical lattices. Phys. Rev. Lett. 94, 043902 (2005).
ADS
Google Scholar
Wang, X., Chen, Z., Kevrekidis, P. G.: Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices. Phys. Rev. Lett. 96, 083904 (2006).
ADS
Google Scholar
Dong, L., Wang, J., Wang, H., Yin, G.: Bessel lattice solitons in competing cubic-quintic nonlinear media. Phys. Rev. A. 79, 013807 (2009).
ADS
Google Scholar
Zhang, B.: Polarization vortex spatial optical solitons in Bessel optical lattices. Phys. Lett. A. 375(7), 1110–1115 (2011).
ADS
MATH
Google Scholar
Liang, J.: Discrete solitons in azimuthally modulated bessel lattices: An introduction to solitons in quasi-periodic structure. J. Sci. China Phys. Mech. Astron. 55, 2018–2023 (2012).
ADS
Google Scholar
Alexeyev, C. N., Volyar, A. V., Yavorsky, M. A.: Linear azimuthons in circular fiber arrays and optical angular momentum of discrete optical vortices. Phys. Rev. A. 80, 063821 (2009).
ADS
Google Scholar
Fischer, R., Neshev, D. N., López-Aguayo, S., Desyatnikov, A. S., Sukhorukov, A. A., Krolikowski, W., Kivshar, Y. S.: Light localization in azimuthally modulated bessel photonic lattices. J. Mater. Sci. Mater. Electron. 18, 277–283 (2007).
Google Scholar
Turitsyn, S. K., Rubenchik, A. M., Fedoruk, M. P., Tkachenko, E.: Coherent propagation and energy transfer in low-dimension nonlinear arrays. Phys. Rev. A. 86, 031804 (2012).
ADS
Google Scholar
Hizanidis, K., Droulias, S., Tsopelas, I., Efremidis, N. K., Christodoulides, D. N.: Centrally coupled circular array of optical waveguides: The existence of stable steady-state continuous waves and breathing modes. Phys. Scr.T107(5), 13–19 (2004).
ADS
MATH
Google Scholar
Hizanidis, K., Droulias, S., Tsopelas, I., Efremdis, N. K., Christodoulides, D. N.: Localized modes in a circular array of coupled nonlinear optical waveguides. Int. J. Bifurcation Chaos. 16(06), 1739–1752 (2006).
ADS
MathSciNet
MATH
Google Scholar
Hadzievski, L., Maluckov, A., Rubenchik, A., Turitsyn, S.: Stable optical vortices in nonlinear multicore fibers. Light Sci. Appl. 4, 314 (2015).
Google Scholar
Radosavljević, A., Daničić, A., Petrovic, J., Maluckov, A., Hadzievski, L.: Coherent light propagation through multicore optical fibers with linearly coupled cores. J. Opt. Soc. Am. B. 32(12), 2520–2527 (2015).
ADS
Google Scholar
Chan, F. Y. M., Lau, A. P. T., Tam, H. -Y.: Mode coupling dynamics and communication strategies for multi-core fiber systems. Opt. Express. 20(4), 4548–4563 (2012).
ADS
Google Scholar
Mendinueta, J. M. D., Shinada, S., Hirota, Y., Furukawa, H., Wada, N.: High-capacity super-channel-enabled multi-core fiber optical switching system for converged inter/intra data center and edge optical networks. IEEE J. Sel. Topics Quantum Electron. 26(4), 1–13 (2020).
Google Scholar
Richardson, D. J., Nilsson, J., Clarkson, W. A.: High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B. 27(11), 63–92 (2010).
Google Scholar
Klenke, A., Müller, M., Stark, H., Kienel, M., Jauregui, C., Tünnermann, A., Limpert, J.: Coherent beam combination of ultrafast fiber lasers. IEEE J. Sel. Topics Quantum Electron. 24, 1–9 (2018).
Google Scholar
Klenke, A., Müller, M., Stark, H., Stutzki, F., Hupel, C., Schreiber, T., Tünnermann, A., Limpert, J.: Coherently combined 16-channel multicore fiber laser system. Opt. Lett. 43(7), 1519–1522 (2018).
ADS
Google Scholar
Andrianov, A. V., Kalinin, N. A., Anashkina, E. A., Egorova, O. N., Lipatov, D. S., Kim, A. V., Semjonov, S. L., Litvak, A. G.: Selective excitation and amplification of peak-power-scalable out-of-phase supermode in yb-doped multicore fiber. J. Light. Technol. 38(8), 2464–2470 (2020).
ADS
Google Scholar
Huo, Y., Cheo, P. K., King, G. G.: Fundamental mode operation of a 19-core phase-locked yb-doped fiber amplifier. Opt. Express. 12(25), 6230–6239 (2004).
ADS
Google Scholar
Alexeyev, C. N., Volyar, A. V., Yavorsky, M. A.: Linear azimuthons in circular fiber arrays and optical angular momentum of discrete optical vortices. Phys. Rev. A. 80, 063821 (2009).
ADS
Google Scholar
Bozinovic, N., Golowich, S., Kristensen, P., Ramachandran, S.: Control of orbital angular momentum of light with optical fibers. Opt. Lett. 37(13), 2451–2453 (2012).
ADS
Google Scholar
Golshani, M., Weimann, S., Jafari, K., Nezhad, M. K., Langari, A., Bahrampour, A. R., Eichelkraut, T., Mahdavi, S. M., Szameit, A.: Impact of loss on the wave dynamics in photonic waveguide lattices. Phys. Rev. Lett. 113, 123903 (2014).
ADS
Google Scholar
Kevrekidis, P. G., Frantzeskakis, D. J.: Stabilizing the discrete vortex of topological charge s=2. Phys. Rev. E. 72, 016606 (2005).
ADS
MathSciNet
Google Scholar
Neshev, D. N., Alexander, T. J., Ostrovskaya, E. A., Kivshar, Y. S., Martin, H., Makasyuk, I., Chen, Z.: Observation of discrete vortex solitons in optically induced photonic lattices. Phys. Rev. Lett. 92, 123903 (2004).
ADS
Google Scholar
Aceves, A. B., Luther, G. G., De Angelis, C., Rubenchik, A. M., Turitsyn, S. K.: Energy localization in nonlinearfiber arrays: Collapse-effect compresor. Phys. Rev. Lett. 75, 73–76 (1995).
ADS
Google Scholar
Chan, F. Y. M. A., Lau, P. T., H.-Ya., T.: Mode coupling dynamics and communication strategies for multi-core fiber systems. Opt. Express. 20, 4548–4563 (2012).
ADS
Google Scholar
Zhu, B., Taunay, T. F. M., Yan, F., Fishteyn, M., Monberg, E., V., D. F.: Seven-core multicore fiber transmissions for passive optical network. Opt. Express. 18(11), 11117–11122 (2010).
ADS
Google Scholar
Silberberg, Y.: Collapse of optical pulses. Opt. Lett. 15(22), 1282–1284 (1990).
ADS
Google Scholar
Minardi, S., Eilengerber, F., Kartashov, Y. K., Szameit, A., Ropke, U., Kobele, J., Schuster, K., Bartelt, H., Nolte, S., Torner, L., Lederer, F., Tünnermann, A., Pertsch, T.: Three-dimensional light bullets in arrays of waveguides. Phys. Rev. Lett. 105, 293901 (2010).
Google Scholar
Eilenberger, F., Minardi, S., Szameit, A., Röpke, U., Kobelke, J., Schuster, K., Bartelt, H., Nolte, S., Torner, L., Lederer, F., Tünnermann, A., Pertsch, T.: Evolution dynamics of discrete-continuous light bullets. Phys. Rev. A. 84, 013836 (2011).
ADS
Google Scholar
Shalaby, M., Kermène, V., Pagnoux, D., Desfarges-Berthelemot, A., Barthélémy, A., Popp, A., Abdou Ahmed, M., Voss, A., Graf, T.: 19-cores Yb-fiber laser with mode selection for improved beam brightness. Appl. Phys. B Lasers Opt. 100(4), 859 (2010).
ADS
Google Scholar
Eilenberger, F., Minardi, S., Szameit, A., Röpke, U., Kobelke, J., Schuster, K., Bartelt, H., Nolte, S., Tünnermann, A., Th., P.: Light bullets in waveguide arrays: spacetime-coupling, spectral symmetry breaking and superluminal decay. Opt. Express. 19(23), 23171–23187 (2011).
ADS
Google Scholar
Pertsch, T., Peschel, U., Kobelke, J., Schuster, K., Bartelt, H., Nolte, S., Tünnermann, A., Lederer, F.: Nonlinearity and disorder in fiber arrays. Phys. Rev. Lett. 93(5), 053901 (2004).
ADS
Google Scholar
Solli, D. R., Ropers, C., Koonath, P., Jalali, B.: Optical Rogue Waves. Nature. 450, 1054–1057 (2007).
ADS
Google Scholar
Sukhorukov, A. A., Kivshar, Y. S.: Slow-light optical bullets in arrays of nonlinear Bragg-grating waveguides. Phys. Rev. Lett. 97(23), 233901 (2006).
ADS
Google Scholar
Lushnikov, P. M., Vladimirova, N.: Nonlinear combining of laser beams. Opt. Lett. 39, 3429–3432 (2014).
ADS
Google Scholar
Edmundson, D. E., Enns, R. H.: Robust bistable light bullets. Opt. Lett. 17(8), 586–588 (1992).
ADS
Google Scholar
Wise, F., Trapani, P.: Spatiotemporal Solitons. Opt. Photon. News. 13(2), 28–32 (2002).
ADS
Google Scholar
Malomed, B. A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B. 7, 53–72 (2005).
ADS
Google Scholar
Laedke, E. W., Spatschek, K. H., Turitsyn, S. K.: Stability of discrete solitons and quasicollapse to intrinsically localized modes. Phys. Rev. Lett. 73, 1055–1059 (1994).
ADS
Google Scholar
Laedke, E. W., Spatschek, K. H., Turitsyn, S. K., Mezentsev, V. K.: Analytic criterion for soliton instability in a nonlinear fiber array. Phys. Rev. E. 52, 5549 (1995).
ADS
Google Scholar
Majus, D., Tamosauskas, G., Grazuleviciute, I., Garejev, N., Lotti, A., Couairon, A., Faccio, D., Dubietis, A.: Nature of spatiotemporal light bullets in bulk Kerr media. Phys. Rev. Lett. 112, 193901 (2014).
ADS
Google Scholar
Tran, T. X., Duong, D. C., Biancalana, F.: Light bullets in nonlinear waveguide arrays under the influence of dispersion and the Raman effect. Phys. Rev. A. 90(2), 023857 (2014).
ADS
Google Scholar
Kienel, M., Müller, M., Demmler, S., Rothhardt, J., Klenke, A., Eidam, T., Limpert, J., A., T.: Coherent beam combination of Yb:YAG single-crystal rod amplifiers. Opt. Lett. 39(11), 3278–3281 (2014).
ADS
Google Scholar
Lahini, Y., Frumker, E., Silberberg, Y., Droulias, S., Hizanidis, K., Morandotti, R., Christodoulides, D. N.: Discrete X-wave formation in nonlinear waveguide arrays. Phys. Rev. Lett. 98(2), 023901 (2007).
ADS
Google Scholar
Higham, N.: The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. 26(4), 1179–1193 (2005).
MathSciNet
MATH
Google Scholar
Andrews, D. L., Babiker, M., (Eds): The Angular Momentum of Light. Cambridge University Press, Cambridge (2012).
Google Scholar
Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C., Woerdman, J. P.: Orbital angular momentum of light and the transformation of laguerre - gaussian laser modes. Phys. Rev. A. 45, 8185 (1992).
ADS
Google Scholar
Wang, J.: Twisted optical communications using orbital angular momentum. Sci. China Phys. Mech. Astron. 62, 034201 (2019).
Google Scholar
Bozinovic, N., Yue, Y., Ren, Y., Tur, M., Kristensen, P., Huang, H., E., W. A., Ramachandran, S.: Terabit - scale orbital angular momentum mode division multiplexing in fibers. Science. 340, 1545–1548 (2013).
ADS
Google Scholar
Picardi, M. F., Bliokh, K. Y., Rodriguez - Fortuno, F. J., Alpeggiani, F., Nori, F.: Angular momenta, helicity, and other properties of dielectric - fiber and metallic - wire modes. Optica. 5, 1016–1026 (2018).
ADS
Google Scholar
Bliokh, K. Y., Rodriguez - Fortuno, F. J., Nori, F., Zayats, A. V.: Spin - orbit interactions of light. Nat. Photon. 9, 796–808 (2015).
ADS
Google Scholar
Alexeyev, C. N., Alexeyev, A. N., Lapin, B. P., Yavorsky, M. A.: Spin - orbit - interactions - induced generation of optical vortices in multihelicoidal fibers. Phys. Rev. A. 88, 063814 (2013).
ADS
Google Scholar
Gregg, P., Kristensen, P., Rubano, A., Golowich, S., Marrucci, L., Ramachandran, S.: Enhanced spin orbit interaction of light in highly confining optical fibers for mode division multiplexing. Nat. Commun. 10, 4707 (2019).
ADS
Google Scholar
Sharma, M., Pradhan, P., Ung, B.: Endlessly mono - radial annular core photonic crystal fiber for the broadband transmission and supercontinuum generation of vortex beams. Sci. Rep. 9, 2488 (2019).
ADS
Google Scholar
Prabhakar, G., Gregg, P., Rishoj, L., Kristensen, P., Ramachandran, S.: Octave - wide supercontinuum generation of light - carrying orbital angular momentum. Opt. Express. 27, 11547–11556 (2019).
ADS
Google Scholar
Rottwitt, K., Koefoed, J. G., Ingerslev, K., Kristensen, P.: Inter - modal raman amplification of oam fiber modes. APL Photon. 4, 030802 (2019).
ADS
Google Scholar
Liu, X., Christensen, E. N., Rottwitt, K., Ramachandran, S.: Nonlinear four-wave mixing with enhanced diversity and selectivity via spin and orbital angular momentum conservation. APL Photon. 5, 010802 (2020).
ADS
Google Scholar
Mokhun, I., Mokhun, A., Viktorovskaya, J.: Singularities of the poynting vector and the structure of optical field. Proc. SPIE. 6254, 625409 (2006).
Google Scholar
Novitsky, A. V., Barkovsky, L. M.: Poynting singularities in optical dynamic systems. Phys. Rev. A. 79, 033821 (2009).
ADS
Google Scholar
Berry, M. V.: Optical currents. J. Opt. A Pure Appl. Opt. 11, 094001 (2009).
ADS
Google Scholar
Nye, J. F., Berry, M. V.: Dislocations in wave trains. Proc. R. Soc. A Math. Phys. Eng. Sci.336, 165–190 (1974).
ADS
MathSciNet
MATH
Google Scholar
Basistiy, I. V., Soskin, M. S., Vasnetsov, M. V.: Optical wavefront dislocations and their properties. Opt. Commun. 119, 604–612 (1995).
ADS
Google Scholar
Baranova, N. B., Mamaev, A. V., Pilipetskii, N. F., Zel’dovich, B. Y.: Wave - front dislocations: topological limitations for adaptive systems with phase conjugation. JOSA. 73, 525–528 (1983).
ADS
Google Scholar
Basistiy, I. V., Bazhenov, V. Y., Soskin, M. S., Vasnetsov, M. V.: Optics of light beams with screw dislocations. Opt. Commun. 103, 422–428 (1993).
ADS
Google Scholar
Molina-Terriza, G.: Vortex transformation and vortex dynamics in optical fields. In: Andrews, D. L., Babiker, M. (eds.)The Angular Momentum of Light, pp. 31–50 (2013). https://doi.org/10.1017/cbo9780511795213.003.
Khonina, S. N., Kazanskiy, N. L., Soifer, V. A.: Optical vortices in a fiber: Mode division multiplexing and multimode self - imaging. Recent Prog. Opt. Fiber Res. InTech. 15, 327–352 (2012).
Google Scholar
Gregg, P., Kristensen, P., Ramachandran, S.: Conservation of orbital angular momentum in air - core optical fibers. Optica. 2(3), 267–270 (2015).
ADS
Google Scholar
Borda-Hernandez, J. A., Serpa-Imbett, C. M., Hernandez-Figueroa, H. E.: Vortex polymer optical fiber with 64 stable oam states. Polymers. 12, 2776 (2020).
Google Scholar
Chen, S., Wang, J.: Theorethical analyses on orbital angular momentum modes in conventional graded - index multimode fibre. Sci. Rep. 7, 3990 (2017).
ADS
Google Scholar
Xi, X. M., Wong, G. K. L., Frosz, M. H., Babic, F., Ahmed, G., Jiang, X., Euser, T. G., Russell, P. S. J.: Orbital - angular - momentum preserving helical bloch modes in twisted photonic crystal fibers. Optica. 1, 165–169 (2014).
ADS
Google Scholar
Li, H., Ren, G., Lian, Y., Zhu, B., Tang, M., Zhao, Y., Jian, S.: Broadband angular momentum transmission using a hollow - core photonic band gap fiber. Opt. Lett. 41, 3591–3594 (2016).
ADS
Google Scholar
Li, H., Ren, G., Zhu, B., Gao, Y., Yin, B., Wang, J., Jian, S.: Guiding terahertz orbital angular momentum beams in multimode kagome hollow-core fibers. Opt. Lett. 42, 179–182 (2017).
ADS
Google Scholar
Allen, L., Barnett, S. M., Padgett, M. J.: Optical Angular Momentum. Institute of Physics Publishing, Bristol (2003).
Google Scholar
Ndagano, B., Bruning, R., McLaren, M., Duparre, M., Forbes, A.: Fiber propagation of vector modes. Opt. Express. 23, 17330–17336 (2015).
ADS
Google Scholar
Bliokh, K. Y., Bekshaev, A. Y., Nori, F.: Optical momentum, spin, and angular momentum in dispersive media. Phys. Rev. Lett. 119, 073901 (2017).
ADS
Google Scholar
Volyar, A. V., Fadeeva, T. A.: Angular momentum of the felds of a few – mode fber: I. a perturbed optical vortex. Tech. Phys. Lett. 23, 848–851 (1997).
ADS
Google Scholar
Pryamikov, A. D., Alagashev, G. K.: Features of light leakage from the negative curvature hollow core fbres. Opt. Eng. 57, 066106 (2018).
ADS
Google Scholar
Pryamikov, A. D., Biriukov, A. S., Kosolapov, A. F., Plotnichenko, V. G., Semjonov, S. L., Dianov, E. M.: Demonstration of a waveguide regime for a silica hollow – core microstructured optical fbre with a negative curvature of the core boundary in the spectral region > 3.5 μm. Opt. Express. 19, 1441–1448 (2011).
ADS
Google Scholar
Pryamikov, A., Alagashev, G., Falkovich, G., Turitsyn, S.: Light transport and vortex - supported wave-guiding in microstructured optical fbres. Sci. Rep. 10, 2507 (2020).
ADS
Google Scholar
Luan, F., George, A. K., Hedley, T. D., Pearce, G. J., Bird, D. M., Knight, J. C., J., R. P. S.: All – solid band gap fibres. Opt. Lett. 29, 2369–2371 (2004).
ADS
Google Scholar
Kotlyar, V. V., Kovalev, A. A., Porfirev, A. P.: Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl. Opt. 56(14), 4095–4104 (2017).
ADS
Google Scholar
Chekhovskoy, I. S., Paasonen, V. I., Shtyrina, O. V., Fedoruk, M. P.: Numerical approaches to simulation ofmulti-core fbers. J. Comput. Phys. 334, 31–34 (2017).
ADS
MathSciNet
MATH
Google Scholar
Sherman, J., Morrison, W. J.: Adjustment of an inverse matrix corresponding to changes in a given column or a given row of the original matrix. Ann. Math. Stat. 20(4), 621–622 (1949).
Google Scholar
Skiba, Y. N.: A non-iterative implicit algorithm for the solution of advectiondifusion equation on a sphere. Int. J. Numer. Methods Fluids. 78(5), 257–282 (2015).
ADS
Google Scholar
Chekhovskoy, I. S.: Using pade approximation for solving systems of nonlinear schrodinger equations by the split-step fourier method (in russian). Comput. Technol. 20(3), 99–108 (2015).
Google Scholar
Taha, T. R., Ablowitz, M. J.: Analytical and numerical aspects of certain nonlinear evolution equations. ii. numerical, nonlinear schrodinger equation. J. Comput. Phys. 55(2), 201–230 (1984).
ADS
MathSciNet
MATH
Google Scholar
Moler, C., Loan, C. V.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003).
ADS
MathSciNet
MATH
Google Scholar
Varga, R. S.: Matrix Iterative Analysis, 2nd Edition. Springer, Berlin Heidelberg (2002).
Google Scholar