Ferry, V.E., Munday, J.N., Atwater, H.A.: Design considerations for plasmonic photovoltaics. Adv. Mater. 22, 4794–4808 (2010)
Google Scholar
Pala, R.A., White, J., Barnard, E., Liu, J., Brongersma, M.L.: Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009)
Google Scholar
Zhou, D., Biswas, R.: Photonic crystal enhanced light-trapping in thin film solar cells. J. Appl. Phys. 103, 093102 (2008)
ADS
Google Scholar
Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)
ADS
Google Scholar
Pillai, S., Green, M.: Plasmonics for photovoltaic applications. Sol. Energy Mater. Sol. Cells. 94, 1481–1486 (2010)
Google Scholar
Redfield, D.: Multiple-pass thin-film silicon solar cell. Appl. Phys. Lett. 25, 647–648 (1974)
ADS
Google Scholar
Yablonovitch, E.: Statistical ray optics. JOSA. 72, 899–907 (1982)
ADS
Google Scholar
Ou, Q., Zhang, Y., Wang, Z., Yuwono, J.A., Wang, R., Dai, Z., et al.: Strong depletion in hybrid perovskite p–n junctions induced by local electronic doping. Adv. Mater. 30, 1705792 (2018)
Google Scholar
Chen, K., Jin, W., Zhang, Y., Yang, T., Reiss, P., Zhong, Q., et al.: High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering. J. Am. Chem. Soc. 142, 3775–3783 (2020)
Google Scholar
Chen, K., Zhong, Q., Chen, W., Sang, B., Wang, Y., Yang, T., et al.: Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Adv. Funct. Mater. 29, 1900991 (2019)
Google Scholar
Biswas, R., Xu, C.: Nano-crystalline silicon solar cell architecture with absorption at the classical 4n 2 limit. Opt. Express. 19, A664–A672 (2011)
ADS
Google Scholar
Munday, J.N., Atwater, H.A.: Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano Lett. 11, 2195–2201 (2010)
ADS
Google Scholar
Kim, S.-S., Na, S.-I., Jo, J., Kim, D.-Y., Nah, Y.-C.: Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett. 93, 305 (2008)
Google Scholar
Catchpole, K., Polman, A.: Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93, 191113 (2008)
ADS
Google Scholar
Standridge, S.D., Schatz, G.C., Hupp, J.T.: Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2. Langmuir. 25, 2596–2600 (2009)
Google Scholar
Moreno, F., García-Cámara, B., Saiz, J., González, F.: Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles. Opt. Express. 16, 12487–12504 (2008)
ADS
Google Scholar
Heydari, M., Sabaeian, M.: Plasmonic nanogratings on MIM and SOI thin-film solar cells: comparison and optimization of optical and electric enhancements. Appl. Opt. 56, 1917–1924 (2017)
ADS
Google Scholar
Sabaeian, M., Heydari, M., Ajamgard, N.: Plasmonic excitation-assisted optical and electric enhancement in ultra-thin solar cells: the influence of nano-strip cross section. AIP Adv. 5, 087126 (2015)
ADS
Google Scholar
Zhang, Y., Lim, C.-K., Dai, Z., Yu, G., Haus, J.W., Zhang, H., et al.: Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep. 795,1-51(2019)
Gao, T., Stevens, E., Lee, J.-k., Leu, P.W.: Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping. Opt. Lett. 39, 4647–4650 (2014)
ADS
Google Scholar
Karatay, D.U., Salvador, M., Yao, K., Jen, A.K.-Y., Ginger, D.S.: Performance limits of plasmon-enhanced organic photovoltaics. Appl. Phys. Lett. 105, 109–101 (2014)
Google Scholar
Pillai, S., Catchpole, K., Trupke, T., Green, M.: Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007)
ADS
Google Scholar
Lin, M.-Y., Kang, Y.L., Chen, Y.-C., Tsai, T.-H., Lin, S.-C., Huang, Y.-H., et al.: Plasmonic ITO-free polymer solar cell. Opt. Express. 22, A438–A445 (2014)
Google Scholar
Lee, S., Mason, D.R., In, S., Park, N.: Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance. Opt. Express. 22, A1145–A1152 (2014)
ADS
Google Scholar
Hsiao, H.-H., Chang, H.-C., Wu, Y.-R.: Design of anti-ring back reflectors for thin-film solar cells based on three-dimensional optical and electrical modeling. Appl. Phys. Lett. 105, 061108 (2014)
ADS
Google Scholar
Zhang, Y., Jia, B., Ouyang, Z., Gu, M.: Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells. J. Appl. Phys. 116, 124303 (2014)
ADS
Google Scholar
Morawiec, S., Mendes, M.J., Filonovich, S.A., Mateus, T., Mirabella, S., Águas, H., et al.: Broadband photocurrent enhancement in a-Si: H solar cells with plasmonic back reflectors. Opt. Express. 22, A1059–A1070 (2014)
Google Scholar
You, J., Li, X., Xie, F.X., Sha, W.E., Kwong, J.H., Li, G., et al.: Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode. Adv. Energy Mater. 2, 1203–1207 (2012)
Google Scholar
West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., Boltasseva, A.: Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010)
ADS
Google Scholar
Heidari, M., Sabaeian, M., Ajamgard, N.: The influence of silver nanopyramids on the optical absorption in the plasmonic organic photovoltaic cells. J. Res. Many-body Syst. 6, 63–70 (2016)
Google Scholar
Johnson, P.B., Christy, R.-W.: Optical constants of the noble metals. Phys. Rev. B. 6, 4370 (1972)
ADS
Google Scholar
Pei, J., Yang, J., Yildirim, T., Zhang, H., Lu, Y.: Many-body complexes in 2D semiconductors. Adv. Mater. 31, 1706945 (2019)
Google Scholar
Guo, S., Zhang, Y., Ge, Y., Zhang, S., Zeng, H., Zhang, H.: 2D V-V binary materials: status and challenges. Adv. Mater. 31, 1902352 (2019)
Google Scholar
He, J., Tao, L., Zhang, H., Zhou, B., Li, J.: Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale. 11, 2577–2593 (2019)
Google Scholar
Shalaev, V.M.: Transforming light. Science. 322(5900),384–386 (2008)
Vakil, A., Engheta, N.: Transformation optics using graphene. Science. 332, 1291–1294 (2011)
ADS
Google Scholar
Jablan, M., Buljan, H., Soljačić, M.: Plasmonics in graphene at infrared frequencies. Phys. Rev. B. 80, 245435 (2009)
ADS
Google Scholar
Koppens, F.H., Chang, D.E., García de Abajo, F.J.: Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011)
ADS
Google Scholar
Hajati, Y., Zanbouri, Z., Sabaeian, M.: Low-loss and high-performance mid-infrared plasmon-phonon in graphene-hexagonal boron nitride waveguide. JOSA B. 35, 446–453 (2018)
ADS
Google Scholar
Hajati, Y., Zanbouri, Z., Sabaeian, M.: Optimizing encapsulated graphene in hexagonal boron nitride toward low propagation loss and enhanced field confinement. JOSA B. 36, 1189–1199 (2019)
ADS
Google Scholar
Zhou, X., Zhang, T., Chen, L., Hong, W., Li, X.: A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. J. Lightwave Technol. 32, 3597–3601 (2014)
ADS
Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al.: Electric field effect in atomically thin carbon films. Science. 306, 666–669 (2004)
ADS
Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438, 197–200 (2005)
ADS
Google Scholar
Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)
ADS
Google Scholar
Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.: Graphene photonics and optoelectronics. Nat. Photonics. 4, 611–622 (2010)
ADS
Google Scholar
Avouris, P.: Graphene: electronic and photonic properties and devices. Nano Lett. 10, 4285–4294 (2010)
ADS
Google Scholar
Avouris, P., Freitag, M.: Graphene photonics, plasmonics, and optoelectronics. IEEE J. Selected Topics Quantum Electron. 20, 72–83 (2014)
ADS
Google Scholar
Garcia de Abajo, F.J.: Graphene plasmonics: challenges and opportunities. Acs Photonics. 1, 135–152 (2014)
Google Scholar
Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008)
ADS
Google Scholar
Hajati, M., Hajati, Y.: Dynamic tuning of mid-infrared plasmons in graphene–buffer–SiO 2–Si nanostructures. JOSA B. 33, 1303–1310 (2016)
ADS
Google Scholar
Hajati, M., Hajati, Y.: High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate. JOSA B. 33, 2560–2565 (2016)
ADS
Google Scholar
Christensen, J., Manjavacas, A., Thongrattanasiri, S., Koppens, F.H., García de Abajo, F.J.: Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano. 6, 431–440 (2011)
Google Scholar
Patel, K., Tyagi, P.K.: Multilayer graphene as a transparent conducting electrode in silicon heterojunction solar cells. AIP Adv. 5, 077165 (2015)
ADS
Google Scholar
Aspnes, D.E., Studna, A.: Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev. Phys. Rev. B. 27, 985 (1983)
ADS
Google Scholar
Nikitin, A.Y., Guinea, F., García-Vidal, F., Martín-Moreno, L.: Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B. 84, 161407 (2011)
ADS
Google Scholar
Francescato, Y., Giannini, V., Maier, S.A.: Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon. New J. Phys. 15, 063020 (2013)
ADS
Google Scholar
Yariv, A.: Introduction to Optical Electronics (1976)
Google Scholar
Lasnier, F.: Photovoltaic Engineering Handbook. CRC Press (1990)
Liang, J., Bi, H., Wan, D., Huang, F.: Novel Cu nanowires/graphene as the back contact for CdTe solar cells. Adv. Funct. Mater. 22, 1267–1271 (2012)
Google Scholar
Shi, Z., Jayatissa, A.H.: The impact of graphene on the fabrication of thin film solar cells: current status and future prospects. Materials. 11, 36 (2018)
Google Scholar
Bi, H., Huang, F., Liang, J., Tang, Y., Lü, X., Xie, X., et al.: Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells. J. Mater. Chem. 21, 17366–17370 (2011)
Google Scholar