Ferry, V.E., Munday, J.N., Atwater, H.A.: Design considerations for plasmonic photovoltaics. Adv. Mater. **22**, 4794–4808 (2010)

Google Scholar

Pala, R.A., White, J., Barnard, E., Liu, J., Brongersma, M.L.: Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. **21**, 3504–3509 (2009)

Google Scholar

Zhou, D., Biswas, R.: Photonic crystal enhanced light-trapping in thin film solar cells. J. Appl. Phys. **103**, 093102 (2008)

ADS
Google Scholar

Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. **9**, 205–213 (2010)

ADS
Google Scholar

Pillai, S., Green, M.: Plasmonics for photovoltaic applications. Sol. Energy Mater. Sol. Cells. **94**, 1481–1486 (2010)

Google Scholar

Redfield, D.: Multiple-pass thin-film silicon solar cell. Appl. Phys. Lett. **25**, 647–648 (1974)

ADS
Google Scholar

Yablonovitch, E.: Statistical ray optics. JOSA. **72**, 899–907 (1982)

ADS
Google Scholar

Ou, Q., Zhang, Y., Wang, Z., Yuwono, J.A., Wang, R., Dai, Z., et al.: Strong depletion in hybrid perovskite p–n junctions induced by local electronic doping. Adv. Mater. **30**, 1705792 (2018)

Google Scholar

Chen, K., Jin, W., Zhang, Y., Yang, T., Reiss, P., Zhong, Q., et al.: High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering. J. Am. Chem. Soc. **142**, 3775–3783 (2020)

Google Scholar

Chen, K., Zhong, Q., Chen, W., Sang, B., Wang, Y., Yang, T., et al.: Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Adv. Funct. Mater. **29**, 1900991 (2019)

Google Scholar

Biswas, R., Xu, C.: Nano-crystalline silicon solar cell architecture with absorption at the classical 4n 2 limit. Opt. Express. **19**, A664–A672 (2011)

ADS
Google Scholar

Munday, J.N., Atwater, H.A.: Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano Lett. **11**, 2195–2201 (2010)

ADS
Google Scholar

Kim, S.-S., Na, S.-I., Jo, J., Kim, D.-Y., Nah, Y.-C.: Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett. **93**, 305 (2008)

Google Scholar

Catchpole, K., Polman, A.: Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. **93**, 191113 (2008)

ADS
Google Scholar

Standridge, S.D., Schatz, G.C., Hupp, J.T.: Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2. Langmuir. **25**, 2596–2600 (2009)

Google Scholar

Moreno, F., García-Cámara, B., Saiz, J., González, F.: Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles. Opt. Express. **16**, 12487–12504 (2008)

ADS
Google Scholar

Heydari, M., Sabaeian, M.: Plasmonic nanogratings on MIM and SOI thin-film solar cells: comparison and optimization of optical and electric enhancements. Appl. Opt. **56**, 1917–1924 (2017)

ADS
Google Scholar

Sabaeian, M., Heydari, M., Ajamgard, N.: Plasmonic excitation-assisted optical and electric enhancement in ultra-thin solar cells: the influence of nano-strip cross section. AIP Adv. **5**, 087126 (2015)

ADS
Google Scholar

Zhang, Y., Lim, C.-K., Dai, Z., Yu, G., Haus, J.W., Zhang, H., et al.: Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep. **795**,1-51(2019)

Gao, T., Stevens, E., Lee, J.-k., Leu, P.W.: Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping. Opt. Lett. **39**, 4647–4650 (2014)

ADS
Google Scholar

Karatay, D.U., Salvador, M., Yao, K., Jen, A.K.-Y., Ginger, D.S.: Performance limits of plasmon-enhanced organic photovoltaics. Appl. Phys. Lett. **105**, 109–101 (2014)

Google Scholar

Pillai, S., Catchpole, K., Trupke, T., Green, M.: Surface plasmon enhanced silicon solar cells. J. Appl. Phys. **101**, 093105 (2007)

ADS
Google Scholar

Lin, M.-Y., Kang, Y.L., Chen, Y.-C., Tsai, T.-H., Lin, S.-C., Huang, Y.-H., et al.: Plasmonic ITO-free polymer solar cell. Opt. Express. **22**, A438–A445 (2014)

Google Scholar

Lee, S., Mason, D.R., In, S., Park, N.: Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance. Opt. Express. **22**, A1145–A1152 (2014)

ADS
Google Scholar

Hsiao, H.-H., Chang, H.-C., Wu, Y.-R.: Design of anti-ring back reflectors for thin-film solar cells based on three-dimensional optical and electrical modeling. Appl. Phys. Lett. **105**, 061108 (2014)

ADS
Google Scholar

Zhang, Y., Jia, B., Ouyang, Z., Gu, M.: Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells. J. Appl. Phys. **116**, 124303 (2014)

ADS
Google Scholar

Morawiec, S., Mendes, M.J., Filonovich, S.A., Mateus, T., Mirabella, S., Águas, H., et al.: Broadband photocurrent enhancement in a-Si: H solar cells with plasmonic back reflectors. Opt. Express. **22**, A1059–A1070 (2014)

Google Scholar

You, J., Li, X., Xie, F.X., Sha, W.E., Kwong, J.H., Li, G., et al.: Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode. Adv. Energy Mater. **2**, 1203–1207 (2012)

Google Scholar

West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., Boltasseva, A.: Searching for better plasmonic materials. Laser Photonics Rev. **4**, 795–808 (2010)

ADS
Google Scholar

Heidari, M., Sabaeian, M., Ajamgard, N.: The influence of silver nanopyramids on the optical absorption in the plasmonic organic photovoltaic cells. J. Res. Many-body Syst. **6**, 63–70 (2016)

Google Scholar

Johnson, P.B., Christy, R.-W.: Optical constants of the noble metals. Phys. Rev. B. **6**, 4370 (1972)

ADS
Google Scholar

Pei, J., Yang, J., Yildirim, T., Zhang, H., Lu, Y.: Many-body complexes in 2D semiconductors. Adv. Mater. **31**, 1706945 (2019)

Google Scholar

Guo, S., Zhang, Y., Ge, Y., Zhang, S., Zeng, H., Zhang, H.: 2D V-V binary materials: status and challenges. Adv. Mater. **31**, 1902352 (2019)

Google Scholar

He, J., Tao, L., Zhang, H., Zhou, B., Li, J.: Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale. **11**, 2577–2593 (2019)

Google Scholar

Shalaev, V.M.: Transforming light. Science. **322**(5900),384–386 (2008)

Vakil, A., Engheta, N.: Transformation optics using graphene. Science. **332**, 1291–1294 (2011)

ADS
Google Scholar

Jablan, M., Buljan, H., Soljačić, M.: Plasmonics in graphene at infrared frequencies. Phys. Rev. B. **80**, 245435 (2009)

ADS
Google Scholar

Koppens, F.H., Chang, D.E., García de Abajo, F.J.: Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. **11**, 3370–3377 (2011)

ADS
Google Scholar

Hajati, Y., Zanbouri, Z., Sabaeian, M.: Low-loss and high-performance mid-infrared plasmon-phonon in graphene-hexagonal boron nitride waveguide. JOSA B. **35**, 446–453 (2018)

ADS
Google Scholar

Hajati, Y., Zanbouri, Z., Sabaeian, M.: Optimizing encapsulated graphene in hexagonal boron nitride toward low propagation loss and enhanced field confinement. JOSA B. **36**, 1189–1199 (2019)

ADS
Google Scholar

Zhou, X., Zhang, T., Chen, L., Hong, W., Li, X.: A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. J. Lightwave Technol. **32**, 3597–3601 (2014)

ADS
Google Scholar

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al.: Electric field effect in atomically thin carbon films. Science. **306**, 666–669 (2004)

ADS
Google Scholar

Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature. **438**, 197–200 (2005)

ADS
Google Scholar

Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. **6**, 183–191 (2007)

ADS
Google Scholar

Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.: Graphene photonics and optoelectronics. Nat. Photonics. **4**, 611–622 (2010)

ADS
Google Scholar

Avouris, P.: Graphene: electronic and photonic properties and devices. Nano Lett. **10**, 4285–4294 (2010)

ADS
Google Scholar

Avouris, P., Freitag, M.: Graphene photonics, plasmonics, and optoelectronics. IEEE J. Selected Topics Quantum Electron. **20**, 72–83 (2014)

ADS
Google Scholar

Garcia de Abajo, F.J.: Graphene plasmonics: challenges and opportunities. Acs Photonics. **1**, 135–152 (2014)

Google Scholar

Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. **103**, 064302 (2008)

ADS
Google Scholar

Hajati, M., Hajati, Y.: Dynamic tuning of mid-infrared plasmons in graphene–buffer–SiO 2–Si nanostructures. JOSA B. **33**, 1303–1310 (2016)

ADS
Google Scholar

Hajati, M., Hajati, Y.: High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate. JOSA B. **33**, 2560–2565 (2016)

ADS
Google Scholar

Christensen, J., Manjavacas, A., Thongrattanasiri, S., Koppens, F.H., García de Abajo, F.J.: Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano. **6**, 431–440 (2011)

Google Scholar

Patel, K., Tyagi, P.K.: Multilayer graphene as a transparent conducting electrode in silicon heterojunction solar cells. AIP Adv. **5**, 077165 (2015)

ADS
Google Scholar

Aspnes, D.E., Studna, A.: Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev. Phys. Rev. B. **27**, 985 (1983)

ADS
Google Scholar

Nikitin, A.Y., Guinea, F., García-Vidal, F., Martín-Moreno, L.: Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B. **84**, 161407 (2011)

ADS
Google Scholar

Francescato, Y., Giannini, V., Maier, S.A.: Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon. New J. Phys. **15**, 063020 (2013)

ADS
Google Scholar

Yariv, A.: Introduction to Optical Electronics (1976)

Google Scholar

Lasnier, F.: Photovoltaic Engineering Handbook. CRC Press (1990)

Liang, J., Bi, H., Wan, D., Huang, F.: Novel Cu nanowires/graphene as the back contact for CdTe solar cells. Adv. Funct. Mater. **22**, 1267–1271 (2012)

Google Scholar

Shi, Z., Jayatissa, A.H.: The impact of graphene on the fabrication of thin film solar cells: current status and future prospects. Materials. **11**, 36 (2018)

Google Scholar

Bi, H., Huang, F., Liang, J., Tang, Y., Lü, X., Xie, X., et al.: Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells. J. Mater. Chem. **21**, 17366–17370 (2011)

Google Scholar