Ahmad, H., Ooi, S.I., Tiu, Z.C., Ismail, M.F., Zulkfili, M.Z., Yasin, M., Thambiratnam, K.: Passively Q-switched thulium fluoride fiber laser operating in S-band region using N-doped graphene saturable absorber. Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01815-2
Chakravarty, U., Gurram, S., Kuruvilla, A., Upadhyaya, B.N., Bindra, K.S.: Short pulse generation in active Q-switched Yb-doped all fiber laser and its amplification. Opt. Laser Technol. 109, 186–192 (2019). https://doi.org/10.1016/j.optlastec.2018.07.074
Article
ADS
Google Scholar
Li, L., et al.: Mode-Locked Er-Doped Fiber Laser by Using MoS2/SiO2 Saturable Absorber. Nanoscale Res. Lett. 14(1), 59 (2019). https://doi.org/10.1186/s11671-019-2888-z
Article
ADS
Google Scholar
Salman, A.A., Al-Janabi, A.: Triple-wavelength Q-switched ytterbium-doped fiber laser based on tungsten oxide as saturable absorber. Microw. Opt. Technol. Lett. 62(6), 2257–2262 (2020). https://doi.org/10.1002/mop.32324
Article
Google Scholar
Salman, A.M., Al-Janabi, A.: Nickel nanoparticles Saturable absorber for multiwavelength pulses generation in ytterbium-doped Fiber laser. Fiber Integr. Opt. 39(3), 109–121 (2020). https://doi.org/10.1080/01468030.2020.1768607
Article
ADS
Google Scholar
Song, H., Wang, D., Wang, Q., Li, L.: Passively Q-switched all-fiber lasers generating cylindrical vector beams with 2-dimensional material saturable absorbers. Opt. Fiber Technol. 45, 71–76 (2018). https://doi.org/10.1016/j.yofte.2018.06.001
Article
ADS
Google Scholar
Wang, S., Sun, X., Luo, Y., Peng, G.: Surface plasmon resonance sensor based on D-shaped hi-bi photonic crystal fiber. Opt. Commun. 467, 125675 (2020). https://doi.org/10.1016/j.optcom.2020.125675
Article
Google Scholar
Pathak, A.K., Singh, V.K.: Theoretical assessment of D-shaped optical fiber chemical sensor associated with nanoscale silver strip operating in near-infrared region. Opt. Quantum Electron. 52(4), (2020). https://doi.org/10.1007/s11082-020-02316-6
Yu, H., Chong, Y., Zhang, P., Ma, J., Li, D.: A D-shaped fiber SPR sensor with a composite nanostructure of MoS2-graphene for glucose detection. Talanta. 219, 121324 (2020). https://doi.org/10.1016/j.talanta.2020.121324
Article
Google Scholar
Zakaria, R., Mezher, M.H., Zahid, A.Z.G., Rohizat, N.S., Patel, S.K., Amiri, I.S.: Nonlinear studies of graphene oxide and its application to moisture detection in transformer oil using D-shaped optical fibre. J. Mod. Opt. 67(7), 619–627 (2020). https://doi.org/10.1080/09500340.2020.1760387
Article
ADS
Google Scholar
Kasim, N., Latiff, A.A., Rusdi, M.F.M., Hisham, M.B., Harun, S.W., Razak, N.F.: Short-pulsed Q-switched thulium doped fiber laser with graphene oxide as a saturable absorber. Optik. 168, 462–466 (2018). https://doi.org/10.1016/j.ijleo.2018.04.117
Article
ADS
Google Scholar
Mohammed, D.Z., Al-Janabi, A.H.: Passively Q-switched erbium doped fiber laser based on double walled carbon nanotubes-polyvinyl alcohol saturable absorber. Laser Phys. 26(11), 115108 (2016). https://doi.org/10.1088/1054-660x/26/11/115108
Article
ADS
Google Scholar
Mohsin Al-Hayali, S.K., Hadi Al-Janabi, A.: Triple-wavelength passively Q-switched ytterbium-doped fibre laser using zinc oxide nanoparticles film as a saturable absorber. J. Mod. Opt. 65(13), 1559–1564 (2018). https://doi.org/10.1080/09500340.2018.1455922
Article
ADS
MathSciNet
Google Scholar
Jariwala, D., Sangwan, V.K., Lauhon, L.J., Marks, T.J., Hersam, M.C.: Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano. 8(2), 1102–1120 (2014). https://doi.org/10.1021/nn500064s
Article
Google Scholar
Chen, B., Zhang, X., Wu, K., Wang, H., Wang, J., Chen, J.: Q-switched fiber laser based on transition metal dichalcogenides MoS(2), MoSe (2), WS (2), and WSe (2). Opt. Express. 23(20), 26723–26737 (2015). https://doi.org/10.1364/OE.23.026723
Article
ADS
Google Scholar
Mak, K.F., Shan, J.: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics. 10(4), 216–226 (2016). https://doi.org/10.1038/nphoton.2015.282
Article
ADS
Google Scholar
Tan, C.-D., Min, F., Wang, M., Zhang, H.-R., Zhang, Z.-H.: Discovering patterns with weak-wildcard gaps. IEEE Access. 4, 4922–4932 (2016). https://doi.org/10.1109/access.2016.2593953
Article
Google Scholar
Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (Nov 2012). https://doi.org/10.1038/nnano.2012.193
Article
ADS
Google Scholar
Yun, W.S., Han, S.W., Hong, S.C., Kim, I.G., Lee, J.D.: Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2semiconductors (M=Mo, W;X=S, Se, Te). Phys. Rev. B. 85(3), (2012). https://doi.org/10.1103/PhysRevB.85.033305
Zhao, N., et al.: Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber. Opt. Express. 22(9), 10906–10913 (2014). https://doi.org/10.1364/OE.22.010906
Article
ADS
Google Scholar
Bao, Q., Loh, K.P.: Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS NANO. 6, 3677–3694 (2012)
Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)
Article
ADS
Google Scholar
Kelleher, E.J.R., et al.: Nanosecond-pulse fiber lasers mode-locked with nanotubes. Appl. Phys. Lett. 95(11), 111108 (2009). https://doi.org/10.1063/1.3207828
Article
ADS
Google Scholar
Lagatsky, A.A., et al.: 2 μm solid-state laser mode-locked by single-layer graphene. Appl. Phys. Lett. 102(1), 013113 (2013). https://doi.org/10.1063/1.4773990
Article
ADS
Google Scholar
Li, J., et al.: Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep. 6, 30361 (2016). https://doi.org/10.1038/srep30361
Article
ADS
Google Scholar
Li, P., Zhang, G., Zhang, H., Zhao, C., Chi, J., Zhao, Z., Yang, C., Hu, H., Yao, Y.: Q -switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber. IEEE Photon. Technol. Lett. 26(19), 1912–1915 (2014). https://doi.org/10.1109/lpt.2014.2341832
Li, X.H., Wang, Y.S., Zhao, W., Zhang, W., Yang, Z., Hu, X.H., Wang, H.S., Wang, X.L., Zhang, Y.N., Gong, Y.K., Li, C., Shen, D.Y.: All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter. Laser Phys. 21(5), 940–944 (2011). https://doi.org/10.1134/s1054660x11090143
Article
ADS
Google Scholar
Peng, J., Zhan, L., Luo, S., Shen, Q.S.: Generation of Soliton molecules in a Normal-dispersion Fiber laser. IEEE Photon. Technol. Lett. 25(10), 948–951 (2013). https://doi.org/10.1109/lpt.2013.2257720
Article
ADS
Google Scholar
Runge, A.F.J., Aguergaray, C., Provo, R., Erkintalo, M., Broderick, N.G.R.: All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror. Opt. Fiber Technol. 20(6), 657–665 (2014). https://doi.org/10.1016/j.yofte.2014.07.010
Article
ADS
Google Scholar
Scardaci, V., Sun, Z., Wang, F., Rozhin, A.G., Hasan, T., Hennrich, F., White, I.H., Milne, W.I., Ferrari, A.C.: Carbon nanotube polycarbonate composites for ultrafast lasers. Adv. Mater. 20(21), 4040–4043 (2008). https://doi.org/10.1002/adma.200800935
Article
Google Scholar
Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (Jul 2010). https://doi.org/10.1038/nnano.2010.89
Article
ADS
Google Scholar
Sotor, J., et al.: Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber. Opt. Express. 22(5), 5536–5543 (2014). https://doi.org/10.1364/OE.22.005536
Article
ADS
Google Scholar
Sun, Z., Hasan, T., Ferrari, A.C.: Ultrafast lasers mode-locked by nanotubes and graphene. Phys. E: Low-dimensional Syst. Nanostructures. 44(6), 1082–1091 (2012). https://doi.org/10.1016/j.physe.2012.01.012
Article
ADS
Google Scholar
Wang, Y., Zhang, B., Yang, H., Hou, J., Su, X., Sun, Z., He, J.: Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror. J. Lightwave Technol. 37(13), 2927–2931 (2019). https://doi.org/10.1109/jlt.2019.2907654
Article
ADS
Google Scholar
Wise, F.W., Chong, A., Renninger, W.H.: High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photon. Rev. 2(1–2), 58–73 (2008). https://doi.org/10.1002/lpor.200710041
Article
ADS
Google Scholar
Woodward, R., Kelleher, E.: 2D saturable absorbers for fibre lasers. Appl. Sci. 5(4), 1440–1456 (2015). https://doi.org/10.3390/app5041440
Article
Google Scholar
Wu, H.-Q., Linghu, C.-Y., Lu, H.-M., Qian, H.: Graphene applications in electronic and optoelectronic devices and circuits. Chin. Phys. B. 22(9), 098106 (2013). https://doi.org/10.1088/1674-1056/22/9/098106
Article
ADS
Google Scholar
Xia, H., et al.: Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber. Opt. Express. 22(14), 17341–17348 (2014). https://doi.org/10.1364/OE.22.017341
Article
ADS
Google Scholar
Zhang, G., Wang, Y., Chen, Z., Jiao, Z.: Graphene oxide based reflective saturable absorber for Q-switched and mode-locked YVO4/Nd:YVO4/YVO4laser. J. Opt. 20(5), 055505 (2018). https://doi.org/10.1088/2040-8986/aab7a6
Article
ADS
Google Scholar
Zhang, H., Tang, D.Y., Zhao, L.M., Bao, Q.L., Loh, K.P.: Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express. 17(19), 17630–17635 (2009). https://doi.org/10.1002/adfm.200901007
Article
ADS
Google Scholar
Zhang, X., et al.: Saturable absorption in graphene at 800-nm band. Optoelectronic Devices And Integration Iv. 8555, 855512 (2012). https://doi.org/10.1117/12.999624
Zhao, L., Li, D., Li, L., Wang, X., Geng, Y., Shen, D., Su, L.: Route to larger pulse energy in ultrafast fiber lasers. IEEE J. Selected Top. Quantum Electron. 24(3), 1–9 (2018). https://doi.org/10.1109/jstqe.2017.2771739
Article
ADS
Google Scholar
Zhong, Y., Cai, Z., Wu, D., Cheng, Y., Peng, J., Weng, J., Luo, Z., Xu, B., Xu, H.: Passively Q-switched red Pr3+−doped fiber laser with graphene-oxide saturable absorber. IEEE Photon. Technol. Lett. 28(16), 1755–1758 (2016). https://doi.org/10.1109/lpt.2016.2550859
Article
ADS
Google Scholar
Dzhibladze, M.I., Esiashvili, Z.G., TeplitskiT, E.S., Isaev, S.K., Sagaradze, V.R.: Mode locking in a fiber laser. IOP Sci. 13(2), 245–246 (1983)
Google Scholar
Martinez, A., Sun, Z.: Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics. 7(11), 842–845 (2013). https://doi.org/10.1038/nphoton.2013.304
Article
ADS
Google Scholar
T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotubeâ “Polymer composites for ultrafast photonics,” Adv. Mater., 21, 38â “39, 3874–3899, 2009, doi: https://doi.org/10.1002/adma.200901122,
Gerosa, R.M., Suarez, F.G., Vianna, P.G., Domingues, S.H., de Matos, C.J.S.: One-step deposition and in-situ reduction of graphene oxide in photonic crystal fiber for all-fiber laser mode locking. Opt. Laser Technol. 121, 105838 (2020). https://doi.org/10.1016/j.optlastec.2019.105838
Article
Google Scholar
Martinez, A., Fuse, K., Xu, B., Yamashita, S.: Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive modelocked lasing. Opt. Express. 18(22), 23054–23061 (2010). https://doi.org/10.1364/OE.18.023054
Article
ADS
Google Scholar
Yanagida, T., Watanabe, K., Okada, G., Kawaguchi, N.: Optical, scintillation and radiation tolerance properties of Pr-doped pyrosilicate crystals. Jpn J. Appl. Phys. 57(10), 106401 (2018). https://doi.org/10.7567/jjap.57.106401
Article
ADS
Google Scholar
Zhang, M., Kelleher, E.J.R., Pozharov, A.S., Obraztsova, E.D., Popov, S.V., Taylor, J.R.: Passive synchronization of all-fiber lasers through a common saturable absorber. Opt. Lett. 36(20), 3984–3986 (2011). https://doi.org/10.1364/OL.36.003984
Article
ADS
Google Scholar
Ni, Z.H., Wang, H.M., Kasim, J., Fan, H.M., Yu, T., Wu, Y.H., Feng, Y.P., Shen, Z.X.: Graphene thickness determination using reflection and contrast spectroscopy. Am. Chem. Soc. 7, 2758–2763 (2007)
Google Scholar
Bo, F., Yi, H., Xiaosheng, X., Hongwei, Z., Zhipei, S., Changxi, Y.: Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 μm. IEEE J. Selected Top. Quantum Electron. 20(5), 411–415 (2014). https://doi.org/10.1109/jstqe.2014.2302361
Article
Google Scholar
Bao, Q., Zhang, H., Wang, Y., Ni, Z., Yan, Y., Shen, Z.X., Loh, K.P., Tang, D.Y.: Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19(19), 3077–3083 (2009). https://doi.org/10.1002/adfm.200901007
Article
Google Scholar
Dai, T., Liu, X., Lei, W., Zhang, J.: Passively Q-Switched Nd:YVO4 Laser Based on Silver-Plated Graphene Saturable Absorber. IEEE (2019)
Google Scholar
Wang, Y.Y., et al.: Raman Studies of monolayer graphene: the substrate effect. Am. Chem. Soc. 12, 10637–10639 (2008)
Google Scholar
Ni, Z.H., Wang, Y.y., Yu, T., Shen, Z.X., Wang, H.m., Wu, Y.H., Chen, W., Shen Wee, A.T.: Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C. 112, 10637–10639 (2008)
Article
Google Scholar
Zheng, Z., Zhao, C., Lu, S., Chen, Y., Li, Y., Zhang, H., Wen, S.: Microwave and optical saturable absorption in graphene. Opt. Express. 20(21), 23201–23214 (2012). https://doi.org/10.1364/OE.20.023201
Article
ADS
Google Scholar
Zhu, Y., et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
Article
Google Scholar
Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (Apr 2009). https://doi.org/10.1038/nnano.2009.58
Article
ADS
Google Scholar
Ghanbari, H., Shafikhani, M.A., Daryalaal, M.: Graphene nanosheets production using liquid-phase exfoliation of pre-milled graphite in dimethylformamide and structural defects evaluation. Ceram. Int. 45(16), 20051–20057 (2019). https://doi.org/10.1016/j.ceramint.2019.06.267
Article
Google Scholar
Chakrabarti, M.H., Manan, N.S.A., Brandon, N.P., Maher, R.C., Mjalli, F.S., AlNashef, I.M., Hajimolana, S.A., Hashim, M.A., Hussain, M.A., Nir, D.: One-pot electrochemical gram-scale synthesis of graphene using deep eutectic solvents and acetonitrile. Chem. Eng. J. 274, 213–223 (2015). https://doi.org/10.1016/j.cej.2015.03.083
Article
Google Scholar
Hossain, S.T., Wang, R.: Electrochemical exfoliation of graphite: effect of temperature and hydrogen peroxide addition. Electrochim. Acta. 216, 253–260 (2016). https://doi.org/10.1016/j.electacta.2016.09.022
Article
Google Scholar
Yu, P., Lowe, S.E., Simon, G.P., Zhong, Y.L.: Electrochemical exfoliation of graphite and production of functional graphene. Curr. Opin. Colloid Interface Sci. 20(5–6), 329–338 (2015). https://doi.org/10.1016/j.cocis.2015.10.007
Article
Google Scholar
Murdock, A.T., van Engers, C.D., Britton, J., Babenko, V., Meysami, S.S., Bishop, H., Crossley, A., Koos, A.A., Grobert, N.: Targeted removal of copper foil surface impurities for improved synthesis of CVD graphene. Carbon. 122, 207–216 (2017). https://doi.org/10.1016/j.carbon.2017.06.075
Article
Google Scholar
Rodriguez, C.L.C., Kessler, F., Dubey, N., Rosa, V., Fechine, G.J.M.: CVD graphene transfer procedure to the surface of stainless steel for stem cell proliferation. Surf. Coat. Technol. 311, 10–18 (2017). https://doi.org/10.1016/j.surfcoat.2016.12.111
Article
Google Scholar
Gao, H., Xue, C., Hu, G., Zhu, K.: Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium. Ultrason. Sonochem. 37, 120–127 (Jul 2017). https://doi.org/10.1016/j.ultsonch.2017.01.001
Article
Google Scholar
Gao, H., Zhu, K., Hu, G., Xue, C.: Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO 2 /H 2 O medium. Chem. Eng. J. 308, 872–879 (2017). https://doi.org/10.1016/j.cej.2016.09.132
Article
Google Scholar
Hadi, A., Karimi-Sabet, J., Moosavian, S.M.A., Ghorbanian, S.: Optimization of graphene production by exfoliation of graphite in supercritical ethanol: a response surface methodology approach. J. Supercrit. Fluids. 107, 92–105 (2016). https://doi.org/10.1016/j.supflu.2015.08.022
Article
Google Scholar
Song, N., Jia, J., Wang, W., Gao, Y., Zhao, Y., Chen, Y.: Green production of pristine graphene using fluid dynamic force in supercritical CO2. Chem. Eng. J. 298, 198–205 (2016). https://doi.org/10.1016/j.cej.2016.04.022
Article
Google Scholar
Chia, J.S.Y., Tan, M.T.T., SimKhiew, P., Chin, J.K., Lee, H., Bien, D.C.S., Teh, A.S., Siong, C.W.: Facile synthesis of few-layer graphene by mild solvent thermal exfoliation of highly oriented pyrolytic graphite. Chem. Eng. J. 231, 1–11 (2013). https://doi.org/10.1016/j.cej.2013.06.106
Article
Google Scholar
Keller, U.: Recent developments in compact ultrafast lasers. Nature. 424, 831–838 (2003)
Article
ADS
Google Scholar
Keller, U.: Semiconductor Saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Selected Top. Quantum Electron. 2(3), 435–453 (1996). https://doi.org/10.1109/2944.571743
Article
ADS
Google Scholar
Keller, U., Miller, D.A.B., Boyd, G.D., Chiu, T.H., Ferguson, J.F., Asom, M.T.: Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. Opt. Lett. 17(7), 505–507 (1992). https://doi.org/10.1364/OL.17.000505
Article
ADS
Google Scholar
Zhu, X., Chen, S.: Study of a graphene saturable absorber film fabricated by the optical deposition method. IEEE Photon. J. 11(6), 1–9 (2019). https://doi.org/10.1109/jphot.2019.2948940
Article
Google Scholar
Yan, Z., Li, T., Zhao, J., Zhao, S., Yang, K., Li, G., Li, D., Zhang, S., Li, J.: Tungsten ditelluride for a nanosecond Ho,Pr:LiLuF4 laser at 2.95 μm. Laser Phys. Lett. 15(4), 045801 (2018). https://doi.org/10.1088/1612-202X/aaa94b
Article
ADS
Google Scholar
Set, S.Y., Yaguchi, H., Tanaka, Y., Jablonski, M.: Ultrafast Fiber pulsed lasers incorporating carbon nanotubes. IEEE J. Selected Top. Quantum Electron. 10(1), 137–146 (2004). https://doi.org/10.1109/jstqe.2003.822912
Article
ADS
Google Scholar
Kajikawa, S., Yoshida, M., Ishii, O., Yamazaki, M., Fujimoto, Y.: Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene. Opt. Commun. 424, 13–16 (2018). https://doi.org/10.1016/j.optcom.2018.04.024
Article
ADS
Google Scholar
Sotor, J., Sobon, G., Abramski, K.M.: Er-doped fibre laser mode-locked by mechanically exfoliated graphene saturable absorber. Opto−Electron. 20(4), 362–366 (2012). https://doi.org/10.2478/s11772−012−0043−9
Article
ADS
Google Scholar
Ahmad, H., Soltani, S., Thambiratnam, K.: Q-switched erbium-doped fiber laser with molybdenum disulfide (MoS2) nanoparticles on D-shaped fiber as saturable absorber. J. Nonlin. Opt. Phys. Mater. 28(03), 1950026 (2019). https://doi.org/10.1142/s0218863519500267
Article
ADS
Google Scholar
Chen, T., Liao, C., Wang, D.N., Wang, Y.: Passively mode-locked fiber laser by using monolayer chemical vapor deposition of graphene on D-shaped fiber. Appl. Opt. 53(13), 2828–2832 (2014). https://doi.org/10.1364/AO.53.002828
Article
ADS
Google Scholar
Zapata, J.D., Steinberg, D., Saito, L.A., de Oliveira, R.E., Cardenas, A.M., de Souza, E.A.: Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation. Sci. Rep. 6, 20644 (2016). https://doi.org/10.1038/srep20644
Article
ADS
Google Scholar
Zapata, J.D., Steinberg, D., Saito, L.A.M., de Oliveira, R.E.P., Cárdenas, A.M., de Souza, E.A.T.: Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation. Sci. Rep. 6(1), (2016). https://doi.org/10.1038/srep20644
Aiub, E.J., Steinberg, D., Thoroh de Souza, E.A., Saito, L.A.M.: 200-fs mode-locked Erbium-doped fiber laser by using mechanically exfoliated MoS<sub>2</sub> saturable absorber onto D-shaped optical fiber. Opt. Express. 25(9), 10546–10552 (2017). https://doi.org/10.1364/OE.25.010546
Article
ADS
Google Scholar
Gerosa, R.M., Steinberg, D., Pellicer, F.N., Domingues, S.H., Souza, E.A.T.d., Saito, L.A.M.: 300-fs mode-locked Erbium doped fiber laser using evanescent field interaction through graphene oxide saturable absorber in D-shaped fibers. In: Latin America Optics and Photonics Conference (2016)
Google Scholar
Steinberg, D., et al.: Graphene oxide and reduced graphene oxide as saturable absorbers onto D-shaped fibers for sub 200-fs EDFL mode-locking. Opt. Mater. Express. 8(1), 144 (2017). https://doi.org/10.1364/ome.8.000144
Article
ADS
Google Scholar
Yang, H.R.: Switchable dual-wavelength fiber laser mode-locked by monolayer graphene on D-shaped fiber. J. Mod. Opt. 62(17), 1363–1367 (2015). https://doi.org/10.1080/09500340.2015.1039616
Article
ADS
Google Scholar
Huang, Q., Zou, C., Wang, T., Al Araimi, M., Rozhin, A., Mou, C.: Influence of average cavity dispersion and spectral bandwidth on passively harmonic mode locked L-band Er-doped Fiber laser. IEEE J. Selected Top. Quantum Electron. 25(4), 1–8 (2019). https://doi.org/10.1109/jstqe.2019.2924869
Article
Google Scholar
Ahmad, H., Reduan, S.A., Yusoff, N., Ismail, M.F., Aidit, S.N.: Mode-locked pulse generation in erbium-doped fiber laser by evanescent field interaction with reduced graphene oxide-titanium dioxide nanohybrid. Opt. Laser Technol. 118, 93–101 (2019). https://doi.org/10.1016/j.optlastec.2019.05.015
Article
ADS
Google Scholar
Ahmad, H., Soltani, S., Thambiratnam, K., Yasin, M., Tiu, Z.C.: Mode-locking in Er-doped fiber laser with reduced graphene oxide on a side-polished fiber as saturable absorber. Opt. Fiber Technol. 50, 177–182 (2019). https://doi.org/10.1016/j.yofte.2019.03.023
Article
ADS
Google Scholar
Salim, M.A.M., Ismail, M.A., Razak, M.Z.A., Azzuhri, S.R.: Generation of Ultrafast Erbium-Doped Fiber Laser (EDFL) utilizing Graphene Thin Film. J. Phys.: Conf. Ser. 1484, 012026 (2020). https://doi.org/10.1088/1742-6596/1484/1/012026
Article
Google Scholar
Chen, Z.-D., et al.: Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser. Chin. Phys. B. 27(8), 084206 (2018). https://doi.org/10.1088/1674-1056/27/8/084206
Article
ADS
Google Scholar
Wang, P., Xu, X., Guo, Z., Jin, X., Shi, G.: 926 nm Yb-doped fiber femtosecond laser system for two-photon microscopy. Appl. Phys. Express. 12(3), 032008 (2019). https://doi.org/10.7567/1882-0786/aafe8a
Article
ADS
Google Scholar
Haris, H., Harun, S.W., Jusoh, Z.: Generation of bound state of solitons pulses with graphene in erbium-doped fiber laser cavity. J. Phys. Conf. Ser. 1151, 012017 (2019). https://doi.org/10.1088/1742-6596/1151/1/012017
Article
Google Scholar
Pawliszewska, M., Martynkien, T., Przewloka, A., Sotor, J.: Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber. Opt. Lett. 43(1), 38–41 (2018). https://doi.org/10.1364/OL.43.000038
Article
ADS
Google Scholar
Wang, C., et al.: Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser. Nanotechnology. 30(2), 025204 (2019). https://doi.org/10.1088/1361-6528/aae8c1
Article
ADS
Google Scholar
Steinberg, D., Zapata, J.D., Thoroh de Souza, E.A., Saito, L.A.M.: Mechanically exfoliated graphite onto D-shaped optical Fiber for femtosecond mode-locked erbium-doped fiber laser. J. Lightwave Technol. 36(10), 1868–1874 (2018). https://doi.org/10.1109/jlt.2018.2793764
Article
ADS
Google Scholar
Uehara, H., Tokita, S., Kawanaka, J., Konishi, D., Murakami, M., Yasuhara, R.: A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber. Appl. Phys. Express. 12(2), 022002 (2019). https://doi.org/10.7567/1882-0786/aaf994
Article
ADS
Google Scholar
Ahmad, H., Albaqawi, H.S., Yusoff, N., Reduan, S.A., Yi, C.W.: Reduced Graphene Oxide-Silver Nanoparticles for Optical Pulse Generation in Ytterbium- and Erbium-Doped Fiber Lasers. Sci. Rep. 10(1), 9408 (2020). https://doi.org/10.1038/s41598-020-66253-w
Article
ADS
Google Scholar
Kim, H., Cho, J., Jang, S.-Y., Song, Y.-W.: Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers. Appl. Phys. Lett. 98(2), 021104 (2011). https://doi.org/10.1063/1.3536502
Article
ADS
Google Scholar
Li, T.-C., Han, C.-F., Hsieh, K.-C., Lin, J.-F.: Effects of thin titanium and graphene depositions and annealing temperature on electrical, optical, and mechanical properties of IGZO/Ti/graphene/PI specimen. Ceram. Int. 44(6), 6573–6583 (2018). https://doi.org/10.1016/j.ceramint.2018.01.060
Article
Google Scholar
Saeed, M., Alshammari, Y., Majeed, S.A., Al-Nasrallah, E.: Chemical vapour deposition of graphene-synthesis, characterisation, and applications: a review. Molecules. 25(17), (2020). https://doi.org/10.3390/molecules25173856
Yu, L., Yin, Y., Shi, Y., Dai, D., He, S.: Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica. 3(2), (2016). https://doi.org/10.1364/optica.3.000159
Kawase, H., Uehara, H., Chen, H., Yasuhara, R.: Passively Q-switched 2.9 μm Er:YAP single crystal laser using graphene saturable absorber. Appl. Phys. Express. 12(10), 102006 (2019). https://doi.org/10.7567/1882-0786/ab3e61
Article
ADS
Google Scholar
Zhang, R., Wang, J., Liao, M., Li, X., Kuan, P.W., Liu, Y., Zhou, Y., Gao, W.: Tunable Q-switched fiber laser based on a graphene saturable absorber without additional tuning element. IEEE Photon. J. 11(1), 1–10 (2019). https://doi.org/10.1109/jphot.2019.2892646
Article
Google Scholar
Sobon, G., Sotor, J., Pasternak, I., Grodecki, K., Paletko, P., Strupinski, W., Jankiewicz, Z., Abramski, K.M.: Er-doped fiber laser mode-locked by CVD-graphene saturable absorber. J. Lightwave Technol. 30(17), 2770–2775 (2012). https://doi.org/10.1109/jlt.2012.2207092
Article
ADS
Google Scholar
Sotor, J., Sobon, G., Krzempek, K., Abramski, K.M.: Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber. Opt. Commun. 285(13–14), 3174–3178 (2012). https://doi.org/10.1016/j.optcom.2012.03.002
Article
ADS
Google Scholar
Zhu, G., Zhu, X., Wang, F., Xu, S., Li, Y., Guo, X., Balakrishnan, K., Norwood, R.A., Peyghambarian, N.: Graphene mode-locked Fiber laser at 2.8 μm. IEEE Photon. Technol. Lett. 28(1), 7–10 (2016). https://doi.org/10.1109/lpt.2015.2478836
Article
ADS
Google Scholar
Cao, W.J., Wang, H.Y., Luo, A.P., Luo, Z.C., Xu, W.C.: Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser. Laser Phys. Lett. 9(1), 54–58 (2012). https://doi.org/10.1002/lapl.201110085
Article
ADS
Google Scholar
Luo, Z., Zhou, M., Wu, D., Ye, C., Weng, J., Dong, J., Xu, H., Cai, Z., Chen, L.: Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped Fiber lasers. J. Lightwave Technol. 29(18), 2732–2739 (2011). https://doi.org/10.1109/jlt.2011.2164238
Article
ADS
Google Scholar
Zhang, H., Bao, Q., Tang, D., Zhao, L., Loh, K.: Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett. 95(14), 141103 (2009). https://doi.org/10.1063/1.3244206
Article
ADS
Google Scholar
Liu, X.M., et al.: Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Sci. Rep. 6, 26024 (2016). https://doi.org/10.1038/srep26024
Article
ADS
Google Scholar
Lv, R.-d., et al.: Carboxyl graphene oxide solution saturable absorber for femtosecond mode-locked erbium-doped fiber laser. Chin. Phys. B. 27(11), 114214 (2018). https://doi.org/10.1088/1674-1056/27/11/114214
Article
ADS
Google Scholar
Wang, Z., Zhu, S.E., Chen, Y., Wu, M., Zhao, C., Zhang, H., Janssen, G.C.A.M., Wen, S.: Multilayer graphene for Q-switched mode-locking operation in an erbium-doped fiber laser. Opt. Commun. 300, 17–21 (2013). https://doi.org/10.1016/j.optcom.2013.03.010
Article
ADS
Google Scholar
Xu, J., Wu, S., Liu, J., Wang, Q., Yang, Q.-H., Wang, P.: Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber. Opt. Commun. 285(21–22), 4466–4469 (2012). https://doi.org/10.1016/j.optcom.2012.07.012
Article
ADS
Google Scholar
Fu, B., Gui, L., Zhang, W., Xiao, X., Zhu, H., Yang, C.: Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber. Opt. Commun. 286, 304–308 (2013). https://doi.org/10.1016/j.optcom.2012.09.026
Article
ADS
Google Scholar
Sobon, G., Sotor, J., Abramski, K.M.: Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz. Appl. Phys. Lett. 100(16), 161109 (2012). https://doi.org/10.1063/1.4704913
Article
ADS
Google Scholar
Peng, J., Zhan, L., Luo, S., Shen, Q.: Passive harmonic mode-locking of dissipative solitons in a normal-dispersion Er-doped fiber laser. J. Lightwave Technol. 31(16), 2709–2714 (2013). https://doi.org/10.1109/jlt.2013.2271773
Article
ADS
Google Scholar
Sobon, G., Sotor, J., Pasternak, I., Krajewska, A., Strupinski, W., Abramski, K.M.: Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers. Opt. Mater. Express. 5(12), 2884 (2015). https://doi.org/10.1364/ome.5.002884
Article
ADS
Google Scholar
Boguslawski, J., et al.: Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers. Photon. Res. 3(4), 119 (2015). https://doi.org/10.1364/prj.3.000119
Article
MathSciNet
Google Scholar
Chen, H.R., Tsai, C.Y., Cheng, H.M., Lin, K.H., Hsieh, W.F.: Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers. Opt. Express. 22(11), 12880–12889 (2014). https://doi.org/10.1364/OE.22.012880
Article
ADS
Google Scholar
Chen, H.-R., Tsai, C.-Y., Chang, C.-Y., Lin, K.-H., Chang, C.-S., Hsieh, W.-F.: Investigation of Graphene dispersion from Kelly sideband in stable mode-locked erbium-doped Fiber laser by few-layer graphene saturable absorbers. J. Lightwave Technol. 33(21), 4406–4412 (2015). https://doi.org/10.1109/jlt.2015.2471100
Article
ADS
Google Scholar
Rosa, H.G., Steinberg, D., Zapata, J.D., Saito, L.A.M., Cardenas, A.M., Gomes, J.C.V., Thoroh de Souza, E.A.: Raman mapping characterization of all-Fiber CVD monolayer graphene saturable absorbers for erbium-doped fiber laser mode locking. J. Lightwave Technol. 33(19), 4118–4123 (2015). https://doi.org/10.1109/jlt.2015.2467173
Article
ADS
Google Scholar
Rosa, H.G., et al.: Controlled stacking of graphene monolayer saturable absorbers for ultrashort pulse generation in erbium-doped fiber lasers. Opt. Mater. Express. 7(7), 2528 (2017). https://doi.org/10.1364/ome.7.002528
Article
ADS
Google Scholar
Sobon, G., Sotor, J., Jagiello, J., Kozinski, R., Zdrojek, M., Holdynski, M., Paletko, P., Boguslawski, J., Lipinska, L., Abramski, K.M.: Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express. 20(17), 19463–19473 (2012). https://doi.org/10.1364/OE.20.019463
Article
ADS
Google Scholar
Wang, Z., Mu, H., Yuan, J., Zhao, C., Bao, Q., Zhang, H.: Graphene-Bi2Te3 Heterostructure as broadband Saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped Fiber lasers. IEEE J. Selected Top. Quantum Electron. 23(1), 195–199 (2017). https://doi.org/10.1109/jstqe.2016.2514784
Article
ADS
Google Scholar
Sobon, G., et al.: Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber. Appl. Phys. Lett. 101(24), 241106 (2012). https://doi.org/10.1063/1.4770373
Article
ADS
Google Scholar
Rosdin, R.Z.R.R.R.R.Z.R.R., Ahmad, F.A.F., Ali, N.M.A.N.M., Harun, S.W.H.S.W., Arof, H.A.H.: Q-switched Er-doped fiber laser with low pumping threshold using graphene saturable absorber. Chin. Opt. Lett. 12(9), 091404–091408 (2014). https://doi.org/10.3788/col201412.091404
Article
ADS
Google Scholar
Wang, Z.T., Chen, Y., Zhao, C.J., Zhang, H., Wen, S.C.: Switchable dual-wavelength synchronously Q-switched erbium-doped Fiber laser based on graphene saturable absorber. IEEE Photon. J. 4(3), 869–876 (2012). https://doi.org/10.1109/jphot.2012.2199102
Article
ADS
Google Scholar
Zhao, J.-Q., et al.: Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation. Chin. Phys. Lett. 29(11), 114206 (2012). https://doi.org/10.1088/0256-307x/29/11/114206
Article
ADS
Google Scholar
Z. Cheng, S. Wu, H. Shi, J. Xu, Q.-H. Yang, and P. Wang, “Dissipative soliton resonance in an all-normal-dispersion graphene oxide mode-locked Yb-doped fiber laser” Tech. Dig., 2013
Huang, S., Wang, Y., Peiguang, Y., Zhang, G., Zhao, J., Li, H., Lin, R., Cao, G., Duan, J.’.: Observation of multipulse bunches in a graphene oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion. Appl. Phys. B. 116(4), 939–946 (2014). https://doi.org/10.1007/s00340-014-5780-7
Article
ADS
Google Scholar
Luo, Z., Huang, Y., Wang, J., Cheng, H., Cai, Z., Ye, C.: Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited Fiber-taper. IEEE Photon. Technol. Lett. 24(17), 1539–1542 (2012). https://doi.org/10.1109/lpt.2012.2208100
Article
ADS
Google Scholar
Li, H., Wang, Y., Yan, P., Cao, G., Zhao, J., Zhang, G., Huang, S., Lin, R.: Passively harmonic mode locking in ytterbium-doped fiber laser with graphene oxide saturable absorber. Opt. Eng. 52, 126102 (2013). https://doi.org/10.1117/1.OE.52.12.126102
Huang, S.S., et al.: Soliton rains in a graphene-oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion. Laser Phys. Lett. 11(2), 025102 (2014). https://doi.org/10.1088/1612-2011/11/2/025102
Article
ADS
Google Scholar
Huaiqin, L., et al.: Tunable and switchable dual-wavelength dissipative soliton operation of a weak-birefringence all-Normal-dispersion Yb-doped Fiber laser. IEEE Photon. J. 5(5), 1501807–1501807 (2013). https://doi.org/10.1109/jphot.2013.2281977
Article
Google Scholar
Cheng, Z., Li, H., Shi, H., Ren, J., Yang, Q.H., Wang, P.: Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser. Opt. Express. 23(6), 7000–7006 (2015). https://doi.org/10.1364/OE.23.007000
Article
ADS
Google Scholar
Hou, L., et al.: Femtosecond ytterbium-doped fiber laser mode-locked by carboxyl-functionalized graphene oxide saturable absorber. Appl. Phys. Express. 11(1), 012702 (2018). https://doi.org/10.7567/apex.11.012702
Article
ADS
Google Scholar
Huang, S., Wang, Y., Yan, P., Zhao, J., Li, H., Lin, R.: Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser. Opt. Express. 22(10), 11417–11426 (2014). https://doi.org/10.1364/OE.22.011417
Article
ADS
Google Scholar
Huang, S.S., et al.: High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber. Laser Phys. 24(1), 015001 (2014). https://doi.org/10.1088/1054-660x/24/1/015001
Article
ADS
Google Scholar
Loiko, P.A., et al.: Passive Q-switching of Yb bulk lasers by a graphene saturable absorber. Appl. Phys. B. 122(4), (2016). https://doi.org/10.1007/s00340-016-6384-1
Liu, J., Wu, S., Yang, Q.-h., Wang, P.: Mode-locked and Q-switched Yb-doped fiber lasers with graphene saturable absorber. Optoelectronic Devices And Integration Iv. 8192, 819244 (2011). https://doi.org/10.1117/12.901098
Fan, L., Dong, Z., Guoyu, H., Guo, J., Xu, C., Li, K., Tian, J., Song, Y.: Influence of few-layer WS2 and mono-layer WS2 on passively Q-switched ytterbium-doped fibre lasers. Laser Phys. 29(7), 075104 (2019). https://doi.org/10.1088/1555-6611/ab20c2
Article
ADS
Google Scholar
Yusoff, R.A.M., Jafry, A.A.A., Kasim, N., Munajat, Y., Harun, S.W., Halim, N.A.H.: Q-switched ytterbium-doped fiber laser using graphene oxide as passive saturable absorber. J. Phys. Conf. Ser. 1371, 012004 (2019). https://doi.org/10.1088/1742-6596/1371/1/012004
Article
Google Scholar
Zhao, F., Wang, H., Zhang, T., Wang, Y., Hu, X., Sun, C., Zhang, W.: Passively Q-switched all-fiber Yb-doped lasers based on nonlinear multimode interference†. J. Russ. Laser Res. 40(1), 87–93 (2019). https://doi.org/10.1007/s10946-019-09774-8
Article
Google Scholar
Ren, Y., Feng, M., Ren, A., Zhang, K., Yang, J., Sun, G., Wang, T., Li, Z., Li, Y., Liu, Z., Song, F.: Dynamics of the passive synchronisation of erbium- and ytterbium-doped fibre Q-switched lasers with a common graphene saturable absorber. Laser Phys. 29(8), 085101 (2019). https://doi.org/10.1088/1555-6611/ab23ec
Article
ADS
Google Scholar
Liu, J., Wang, Y.G., Qu, Z.S., Zheng, L.H., Su, L.B., Xu, J.: Graphene oxide absorber for 2 μm passive mode-locking tm:YAlO3 laser. Laser Phys. Lett. 9(1), 15–19 (2012). https://doi.org/10.1002/lapl.201110087
Article
ADS
Google Scholar
Zhang, E.J.R.K.M., Torrisi, F., Sun, Z., Hasan, T., Popa, D., Wang, F., Ferrari, A.C., Popov, S.V., Taylor, J.R.: Tm-doped fiber laser mode-locked by graphene-polymer composite. Opt. Soc. Am. 20, 25077–25084 (2012)
Google Scholar
Sobon, G., Sotor, J., Pasternak, I., Krajewska, A., Strupinski, W., Abramski, K.M.: All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser. Opt. Express. 23(7), 9339–9346 (2015). https://doi.org/10.1364/OE.23.009339
Article
ADS
Google Scholar
Zhang, M., Kelleher, E.J.R., Torrisi, F., Sun, Z., Hasan, T., Popa, D., Wang, F., Ferrari, A.C., Popov, S.V., Taylor, J.R.: Tm-doped fiber laser mode-locked by graphene-polymer composite. Opt. Express. 20(22), 25077–25084 (2012). https://doi.org/10.1364/OE.20.025077
Article
ADS
Google Scholar
Yan, Z., et al.: Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution. Opt. Express. 23(4), 4369–4376 (2015). https://doi.org/10.1364/OE.23.004369
Article
ADS
Google Scholar
Wang, J., et al.: 152 fs nanotube-mode-locked thulium-doped all-fiber laser. Sci Rep. 6, 28885 (2016). https://doi.org/10.1038/srep28885
Article
ADS
Google Scholar
Liu, J., Xia, K., Zhang, W., Zhu, J., Yan, B., Yang, P., Dai, S., Nie, Q.: Tm-doped all-fiber structured femtosecond laser mode-locked by a novel Chem-Te saturable absorber. Infrared Phys. Technol. 108, 103343 (2020). https://doi.org/10.1016/j.infrared.2020.103343
Article
Google Scholar
Ahmad, H., Reduan, S.A., Ooi, S.I., Ismail, M.A.: Mechanically exfoliated In2Se3 as a saturable absorber for mode-locking a thulium-doped fluoride fiber laser operating in S-band. Appl Opt. 57(24), 6937–6942 (2018). https://doi.org/10.1364/AO.57.006937
Article
ADS
Google Scholar
Dou, Z., Zhang, B., He, X., Xu, Z., Hou, J.: High-power and large-energy dissipative soliton resonance in a compact tm-doped all-fiber laser. IEEE Photon. Technol. Lett. 31(5), 381–384 (2019). https://doi.org/10.1109/lpt.2019.2895906
Article
ADS
Google Scholar
Sotor, J., et al.: All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber. Opt. Lett. 42(8), 1592–1595 (2017). https://doi.org/10.1364/OL.42.001592
Article
ADS
Google Scholar
Zhang, Q., Jiang, X., Zhang, M., Jin, X., Zhang, H., Zheng, Z.: Wideband saturable absorption in metal-organic frameworks (MOFs) for mode-locking Er- and Tm-doped fiber lasers. Nanoscale. 12(7), 4586–4590 (2020). https://doi.org/10.1039/c9nr09330c
Article
Google Scholar
Xie, G.Q., et al.: Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength. Opt. Mater. Express. 2, 879–883 (2012)
Article
ADS
Google Scholar
Ahmad, H., Samion, M.Z., Sharbirin, A.S., Ismail, M.F.: Dual-wavelength, passively Q-switched thulium-doped fiber laser with N-doped graphene saturable absorber. Optik. 149, 391–397 (2017). https://doi.org/10.1016/j.ijleo.2017.09.054
Article
ADS
Google Scholar
Luo, Z., Li, Y., Huang, Y., Zhong, M., Wan, X.: Graphene mode-locked and Qswitched 2-μm Tm/Ho codoped fiber lasers using 1212-nm high-efficient pumping. Opt. Eng. 55(8), 081310(1–6) (2016). https://doi.org/10.1117/1.OE.55.8.081310
Article
ADS
Google Scholar
Ahmad, H., Reduan, S.A., Aidit, S.N., Yusoff, N., Maah, M.J., Ismail, M.F., Tiu, Z.C.: Ternary MoWSe2 alloy saturable absorber for passively Q-switched Yb-, Er- and Tm-doped fiber laser. Opt. Commun. 437, 355–362 (2019). https://doi.org/10.1016/j.optcom.2019.01.009
Article
ADS
Google Scholar
Ahmad, H., Samion, M.Z., Sharbirin, A.S., Norizan, S.F., Aidit, S.N., Ismail, M.F.: Graphene-PVA saturable absorber for generation of a wavelength-tunable passively Q-switched thulium-doped fiber laser in 2.0μm. Laser Phys. 28(5), 055105 (2018). https://doi.org/10.1088/1555-6611/aab2cc
Article
ADS
Google Scholar
Wang, Q., Chen, T., Zhang, B., Li, M., Lu, Y., Chen, K.P.: All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers. Appl. Phys. Lett. 102(13), 131117 (2013). https://doi.org/10.1063/1.4800036
Article
ADS
Google Scholar
Sotor, J., et al.: All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber. Opt. Lett. 41(11), 2592–2595 (2016). https://doi.org/10.1364/OL.41.002592
Article
ADS
Google Scholar
Liu, S., et al.: Graphene Q-switched Ho (3+)-doped ZBLAN fiber laser at 1190 nm. Opt. Lett. 40(2), 147–150 (2015). https://doi.org/10.1364/OL.40.000147
Article
ADS
Google Scholar
Tengfei Dai, X.L., Lei, W., Chang, J.: Passively Q-Switched Nd:YVO 4 Laser Based on Silver-Plated Graphene Saturable Absorber. IEEE (2019)
Google Scholar
Zhao, X., et al.: Picometer-Resolution, Dual-Comb Spectroscopy Based on a Dual-Wavelength Mode-Locked Fiber Laser. CLEO (2016)
Book
Google Scholar
Hu, G., Li, T., Pan, Y., Zhao, X., Zhang, M., Zheng, Z.: Asynchronous and Synchronous Dual-Wavelength Pulse Generation in a Non-zero-Dispersion Fiber Laser. CLEO (2017)
Book
Google Scholar
Chen, J., et al.: Self-Starting, Turn-Key Dual-Comb Mode-Locked Fiber Laser with a Few-Mode Fiber Filter. CLEO (2017)
Book
Google Scholar
Hu, G., et al.: Real-Time Absolute Frequency Measurement of Continuous-Wave Terahertz Radiation Using a Free-Running, Dual-Wavelength, Dual-Comb Mode-Locked Fiber Laser. CLEO (2016)
Zhao, X., Zheng, Z., Liu, Y., Hu, G., Liu, J.: “Dual-wavelength, bidirectional single-wall carbon nanotube mode-locked fiber laser,” (in English). IEEE Photon. Technol. Lett. 26(17), 1722–1725 (Sep 2014). https://doi.org/10.1109/lpt.2014.2332000
Article
ADS
Google Scholar
Liu, L., Zheng, Z., Zhao, X., Sun, S., Zhu, J.: Dual-wavelength passively q-switched erbium fiber laser based on a swnt absorber. FiO/LS Tech. Dig. (2012). https://doi.org/10.1364/FIO.2012.FM3G.6
Hu, G., Zhang, M.: Dual-Wavelength Passively Q-Switched Yb-Doped Fiber Laser Based on WS 2 Saturable Absorber and Intracavity Polarization. CLEO (2016)
Google Scholar
Liu, L., et al.: “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” (in English). Opt. Commun. 294, 267–270 (2013). https://doi.org/10.1016/j.optcom.2012.11.094
Article
ADS
Google Scholar
Hu, G., et al.: Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser. Sci. Rep. 7, 42082 (2017). https://doi.org/10.1038/srep42082
Article
ADS
Google Scholar
Liu, L., Zhao, X., Zheng, Z., Wang, Q.: Fast, long-scan-range pump-probe measurement using a dual-wavelength mode-locked fiber laser. FiO/LS Tech. Dig. (2012). https://doi.org/10.1364/FIO.2012.FW2A.1
Zhao, X., Gong, Z., Liu, Y., Yang, Y., Hu, G., Zheng, Z.: Coherent dual-comb mode-locked fiber laser based on a birefringent ring cavity. Front. Optics/Laser Sci. (2015). https://doi.org/10.1364/FIO.2015.FW3C.3
Chen, J., et al.: Low-power consumption dual-comb spectroscopy based on a battery-powered, free-running dual-comb laser system. Front. Opt. (2017). https://doi.org/10.1364/FIO.2017.JTu3A.17
Zhao, X., Zheng, Z., Liu, Y., Guan, J., Liu, L., Sun, Y.: High-resolution absolute distance measurement using a dual-wavelength, dual-comb, femtosecond fiber laser. CLEO Tech. Dig. (2012). https://doi.org/10.1364/CLEO_SI.2012.CM2J.4
Zheng, Z., Zhao, X.: High-Resolution, Dual-Comb Asynchronous Sampling Enabled by Dual-Wavelength Ultrafast Fiber Lasers and its Applications. In: Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (2013)
Google Scholar
Chen, J., et al.: Dual-wavelength, dual-comb fiber laser based on a nearly-adiabatic fiber-taper filter. Opt. Soc. Am. (2016). https://doi.org/10.1364/FIO.2016.JTh2A.112
Hu, G.: Multiwavelength, subpicosecond pulse generation from a SWNT-SA mode-locked ring birefringent fiber laser. Nonlin. Opt. Fibers. (2015)
Liu, Y., et al.: Multi-wavelength dissipative soliton, single-wall carbon nanotube mode-locked fiber laser. FIO/ LS Tech. Dig. (2011)
Zhao, X., et al.: Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning. Opt. Soc. Am. 19, 1168–1173 (2011)
Article
ADS
Google Scholar
Hu, G., Pan, Y., Wang, R., Zhao, X., Zhang, M., Zheng, Z.: Synchronous dual-wavelength pulse generation in an er-doped fiber laser with near-zero dispersion. Front. Optics/Laser Sci. (2016). https://doi.org/10.1364/FIO.2016.JW4A.31
Hu, G., et al.: Terahertz Dual-Comb Spectroscopy with a Free-Running, Dual-Wavelength-Comb Fiber Laser. CLEO (2017)
Book
Google Scholar
Zhao, X.: Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning. Opt. Soc. Am. (2011). https://doi.org/10.1364/OE.19.001168
Zhao, X., Zheng, Z., Liu, L., Wang, Q., Chen, H., Liu, J.: Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser. Opt. Soc. Am. (2012). https://doi.org/10.1364/OE.20.025584