Tittl, A., Leitis, A., Liu, M., Yesilkoy, F., Choi, D.Y., Neshev, D.N., Yuri, S.K., Altug, H.: Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science. 360, 1105–1109 (2018). https://doi.org/10.1126/Science.aas9768
Article
ADS
MathSciNet
MATH
Google Scholar
Ishikawa, A., Tanaka, T.: Metamaterial absorbers infrared detection of molecular self-assembled monolayers. Sci. Rep. 5(1), 12570 (2015). https://doi.org/10.1038/srep12570
Article
ADS
Google Scholar
Miwa, K., Ebihara, H., Fang, X., Kubo, W.: Photo-thermoelectric conversion of plasmonic nanohole array. Appl. Sci. 10(8), 2681 (2020). https://doi.org/10.3390/app10082681
Article
Google Scholar
Tong, J.K., Hsu, W.C., Huang, Y., Boriskina, S.V., Chen, G.: Thin-film ‘thermal wall’ emitters and absorbers for high-efficiency thermophotovoltaics. Sci. Rep. 5(1), 10661 (2015). https://doi.org/10.1038/srep10661
Article
ADS
Google Scholar
Rephaeli, E., Fan, S.: Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt. Exp. 17(17), 15145–15159 (2009). https://doi.org/10.1364/OE.17.015145
Article
ADS
Google Scholar
Wu, D., Liu, C., Xu, Z., Liu, Y., Yu, L., Chen, L., Li, R., Ma, R., Ye, H.: The design of ultra-broadband selective near perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Mater. Des. 139, 104–111 (2018). https://doi.org/10.1016/j.matdes.2017.10.1077
Article
Google Scholar
Amemiya, K., Koshikawa, H., Imbe, M., Yamaki, T., Shitomi, H.: Perfect blackbody sheets from nano-percision microtextured elastomers for light and thermal radiation management. J. Mater. Chem. C. 7(18), 5418–5425 (2019). https://doi.org/10.1039/c8tc06593d
Article
Google Scholar
Rephaeli, E., Raman, A., Fan, S.: Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13(4), 1457–1461 (2013). https://doi.org/10.1021/nl4004283
Article
ADS
Google Scholar
Rustami, E., Sasagawa, K., Sugie, K., Ohta, Y., Haruta, M., Noda, T., Tokuda, T., Ohta, J.: Needle-type image sensor with band-pass composite emission filter and parallel fiber-coupled laser excitation. IEEE Trans. Circuits Syst.-I. 67(4), 1082–1091 (2020). https://doi.org/10.1109/TCSI.2019.2959592
Article
Google Scholar
Okamoto, K., Okura, K., Wang, P., Ryuzaki, S., Tamada, K.: Flexibly tunable surface plasmon resonance by strong mode coupling using a random metal nanohemisphere on mirror. Nanophotonics. 9(10), 3409–3418 (2020). https://doi.org/10.1515/nanaoph-2020-0118
Article
Google Scholar
Liang, C.J., Huang, K.Y., Hung, L.T., Su, C.Y.: Rapidly fabrication of plasmonic structural color thin films through AAO process in an alkaline solution. Surf. Coat. Technol. 319, 170–181 (2017). https://doi.org/10.1016/j.surfcoat.2017.04.011
Article
Google Scholar
Ellenbogen, T., Seo, K., Crozer, K.B.: Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett. 12(2), 1026–1031 (2012). https://doi.org/10.1021/nl204257g
Article
ADS
Google Scholar
Xu, T., Wu, Y.K., Luo, X., Guo, L.J.: Plasmonic nanoresonators for high resolution colour filtering and spectral imaging. Nat. Commun. 1(1), 59 (2010). https://doi.org/10.1038/ncomms1058
Article
ADS
Google Scholar
Yokogawa, S., Burgos, S., Atwater, H.A.: Plasmonic color filters for CMOS image sensor applications. Nano Lett. 12(8), 4349–4354 (2012). https://doi.org/10.1021/nl302110z
Article
ADS
Google Scholar
Chen, Q., Cumming, D.R.S.: High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt. Exp. 18(13), 14056–14062 (2010). https://doi.org/10.1364/OE.18.014056
Article
ADS
Google Scholar
Mazulquim, D.B., Lee, K.J., Yoon, J.W., Muniz, L.V., Borges, B.-H.V., Neto, L.G., Magnusson, R.: Efficient band-pass color filters enabled by resonant modes and plasmons near the Rayleigh anomaly. Opt. Exp. 22(25), 30843–30851 (2014). https://doi.org/10.1364/OE.22.030843
Article
ADS
Google Scholar
Tan, J., Wu, Z., Xu, K., Meng, Y., Jin, G., Wang, L., Wang, Y.: Numerical study an au-ZnO-Al absorber for a color filter with a high quality factor. Plasmonics. 15(1), 293–299 (2020). https://doi.org/10.1007/s11468-019-01047-z
Article
Google Scholar
Ghobadi, A., Hajian, H., Soydan, M.C., Butun, B., Ozbay, E.: Lithography-free planar band-pass reflective color filter using a series connection of cavities. Sci. Rep. 9(1), 220 (2019). https://doi.org/10.1038/s41598-018-36540-8
Article
Google Scholar
Li, W., Valentine, J.: Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14(6), 3510–3514 (2014). https://doi.org/10.1021/nl501090w
Article
ADS
Google Scholar
Zhao, X., Yang, Y., Wang, Y., Hao, Y., Chen, Z., Zhang, M.: Study of the converter based on photonic crystals filters and quantum dots for solar blind ultraviolet imaging system. Opt. Eng. 57(11), 117106 (2018). https://doi.org/10.1117/1.OE.57.11.117106
Article
ADS
Google Scholar
Hennesy, J., Jewell, A.D., Hoenk, M.E., Nikzad, S.: Metal-dielectric filters for solar-blind silicon ultraviolet detectors. Appl. Opt. 54(11), 3507–3512 (2015). https://doi.org/10.1364/AO.54.11.003507
Article
ADS
Google Scholar
Li, X., Xu, J.: Synthesis of CdS QDs with single cubic and hexagonal lattice for blue-light-blocking nanocomposite films with a narrow absorbing transitional band. Mater. Today Commun. 24, 101108 (2020). https://doi.org/10.1016/j.mtcomm.2020.101108
Article
Google Scholar
Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010). https://doi.org/10.1021/nl9041033
Article
ADS
Google Scholar
Ding, F., Jin, Y., Li, B., Cheng, H., Mo, L., He, S.: Ultrabroadband strong light absorption based on thin multilayered metamaterials. Laser Photon. Rev. 8(6), 946–953 (2014). https://doi.org/10.1002/lpor.201400157
Article
ADS
Google Scholar
Hao, J., Wang, J., Liu, X., Padilla, W.J., Zhou, L., Qiu, M.: High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96(25), 251104 (2010). https://doi.org/10.1063/1.3442904
Article
ADS
Google Scholar
Ding, F., Yang, Y., Deshpande, R.A., Bozhevolnyi, S.I.: A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics. 7(6), 1129–1156 (2018). https://doi.org/10.1515/nanoph-2017-0125
Article
Google Scholar
Hu, J., Shen, M., Li, Z., Li, X., Liu, G., Wang, X., Kan, C., Li, Y.: Dual-channel extraordinary ultraviolet transmission through an aluminum nanohole array. Nanotechnology. 28(21), 215205 (2017). https://doi.org/10.1088/1361-6528/aa6a38
Article
ADS
Google Scholar
Li, W.D., Chou, S.Y.: Solar-blind deep-UV band filter (250-350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography. Opt. Exp. 18(2), 931–937 (2010). https://doi.org/10.1364/OE.18.000931
Article
ADS
Google Scholar
Jakšić, Z., Maksimović, M., Sarajlić, M., Tanasković, D.: Surface plasmon-polariton assisted metal-dielectric multilayers as passband filters for ultraviolet range. Acta Physica Polonica A. 112, 953–958 (2007). https://doi.org/10.12693/APhysPolA.112.953
Article
ADS
Google Scholar
Mu, J., Lin, P.T., Zhang, L., Michel, J., Kimerling, L.C., Jaworski, F., Agarwal, A.: Design and fabrication of a high transmissivity metal-dielectric ultraviolet band-pass filter. Appl. Phys. Lett. 102(21), 213105 (2013). https://doi.org/10.1063/1.4807925
Article
ADS
Google Scholar
Morsy, A.M., Povinelli, M.L., Hennessy, J.: Highly selective ultraviolet aluminum plasmonic filters on silicon. Opt. Exp. 26(18), 22650–22657 (2018). https://doi.org/10.1364/OE.26.022650
Article
ADS
Google Scholar
Gao, H., Peng, W., Cui, W., Chu, S., Yu, L., Yang, X.: Ultraviolet to near infrared titanium nitride broadband plasmonic absorber. Opt. Mater. 97, 109377 (2019). https://doi.org/10.1016/j.optmat.2019.109377
Article
Google Scholar
Ghobadi, A., Hajian, H., Butun, B., Ozbay, E.: Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers. ACS Photonics. 5(11), 4203–4221 (2018). https://doi.org/10.1021/acsphotonics.8b00872
Article
Google Scholar
Hajian, H., Ghobadi, A., Butun, B., Ozbay, E.: Active metamaterial nearly perfect light absorbers: a review. J. Opt. Soc. Am. B. 36(8), F131–F143 (2019). https://doi.org/10.1364/JOSAB.36.00F131
Article
Google Scholar
Feng, L., Huo, P., Liang, Y., Xu, T.: Photonic metamaterial absorbers: morphology engineering and interdisciplinary applications. Adv. Mater. 32, 1903787 (2020). https://doi.org/10.1002/adma.201903787
Article
Google Scholar
Ng, C., Weswmann, L., Pachenko, E., Song, J., Davis, T.J., Roberts, A., Gómez, D.E.: Plasmonic near-complete optical absorption and its applications. Adv. Opt. Mater. 7(14), 1801660 (2018). https://doi.org/10.1002/adom.201801660
Article
Google Scholar
Motogaito, A., Morishita, Y., Miyake, H., Hiramatsu, K.: Extraordibary optical transmission exhibited by surface plasmon polaritons in a double-layer wire grid polarizer. Plasmonics. 10(6), 1657–1662 (2015). https://doi.org/10.1007/s11468-015-9980-8
Article
Google Scholar
Motogaito, A., Nakajima, T., Miyake, H., Hiramatsu, K.: Excitation mechanism of surface plasmon polaritons in a double-layer wire grid structure. Appl. Phys. A Mater. Sci. Process. 123(12), 729 (2017). https://doi.org/10.1007/s00339-017-1367-6
Article
ADS
Google Scholar
Motogaito, A., Mito, S., Miyake, H., Hiramatsu, K.: Detecting high-refractive-index media using surface plasmon sensor with one-dimensional metal diffraction grating. Opt. Photon. J. 6(07), 164–170 (2016). https://doi.org/10.4236/opj.2016.67018
Article
ADS
Google Scholar
Motogaito, A., Ito, Y.: Excitation mechanism of surface plasmon polaritons for surface plasmonsensor with 1D metal grating structure for high refractive index medium. Photon. Sens. 9(1), 11–18 (2019). https://doi.org/10.1007/s13320-018-0515-8
Article
ADS
Google Scholar
Motogaito, A., Watanabe, A.: Wave plate fabrication using surface plasmon polariton in a Ag wire grid structure. Technical digest on the 24th Microoptics Conference, pp. 250–251 (2019). https://doi.org/10.23919/MOC46630.2019.8982793
Book
Google Scholar
Khlopin, D., Laux, F., Wardley, W.P., Martin, J., Wurtz, G.A., Plain, J., Bonod, N., Zayats, A.V., Dickson, W., Gérard, D.: Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays. J Opt. Soc. Am B. 34(3), 691–700 (2017). https://doi.org/10.1364/JOSAB.34.000691
Article
ADS
Google Scholar
Zhu, X., Hossain, G.M.I., George, M., Farhang, A., Cicek, A., Yanik, A.A.: Beyond noble metals: high Q-factor aluminum nanoplasmonics. ACS Photon. 7(2), 416–424 (2020). https://doi.org/10.1021/acsphotonics.9b01368
Article
Google Scholar
Gerasimov, V.S., Ershov, A.E., Bikbaev, R.G., Rasskazov, I.L., Isaev, I.L., Semina, P.N., Kostyukov, A.S., Zakomirnyi, V.I., Polyutov, S.P., Karpov, S.V.: Plasmonic lattice Kerker effect in ultraviolet-visible spectral range. Phys. Rev. B. 103(3), 035402 (2021). https://doi.org/10.1103/PhysRevB.103.035402
Article
ADS
Google Scholar
Gao, H., McMahon, J.M., Lee, M.H., Henzie, J., Gray, S.K., Schatz, G.C., Odom, T.W.: Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Opt. Exp. 17(4), 2334–2340 (2009). https://doi.org/10.1364/OE.17.002334
Article
ADS
Google Scholar